933 resultados para MARROW-TRANSPLANTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of antibodies in chronic injury to organ transplants has been suggested for many years, but recently emphasized by new data. We have observed that when immunosuppressive potency decreases either by intentional weaning of maintenance agents or due to homeostatic repopulation after immune cell depletion, the threshold of B cell activation may be lowered. In human transplant recipients the result may be donor-specific antibody, C4d+ injury, and chronic rejection. This scenario has precise parallels in a rhesus monkey renal allograft model in which T cells are depleted with CD3 immunotoxin, or in a CD52-T cell transgenic mouse model using alemtuzumab to deplete T cells. Such animal models may be useful for the testing of therapeutic strategies to prevent DSA. We agree with others who suggest that weaning of immunosuppression may place transplant recipients at risk of chronic antibody-mediated rejection, and that strategies to prevent this scenario are needed if we are to improve long-term graft and patient outcomes in transplantation. We believe that animal models will play a crucial role in defining the pathophysiology of antibody-mediated rejection and in developing effective therapies to prevent graft injury. Two such animal models are described herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. METHODS: Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. RESULTS: Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. CONCLUSIONS: Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate and breast cancers are two of the most common types of cancer in the United States, and those cancers metastasize to bone in more than two thirds of patients. Recent evidence suggests that thermal therapy is effective at treating metastatic bone cancer. For example, thermal therapy enables targeted drug delivery to bone, ablation of cancer cells in bone marrow, and palliation of bone pain. Thermal therapy of bone metastases would be greatly improved if it were possible to image the temperature of the tissue surrounding the disease, which is usually red bone marrow (RBM). Unfortunately, current thermal imaging techniques are inaccurate in RBM.

This dissertation shows that many of the difficulties with thermal imaging of RBM can be overcome using a magnetic resonance phenomenon called an intermolecular multiple quantum coherence (iMQC). Herein, iMQCs are detected with a magnetic resonance imaging (MRI) pulse sequence called multi-spin-echo HOMOGENIZED with off resonance transfer (MSE-HOT). Compared to traditional methods, MSE-HOT provided ten-fold more accurate images of temperature change. Furthermore, MSE-HOT was translated to a human MRI scanner, which enabled imaging of RBM temperature during heating with a clinical focused ultrasound applicator. In summary, this dissertation develops a MRI technique that enables thermal imaging of RBM during thermal therapy of bone metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) is a cytoprotective molecule and increased expression in experimental transplant models correlates with reduced graft injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates gene expression; a short number of repeats (S-allele

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This single center study is the largest series of renal transplant recipients and donors screened for the commonest prothrombotic genotypes. A total of 562 transplant recipients and 457 kidney donors were genotyped for the factor V Leiden and prothrombin G20210A mutations. The prevalence of heterozygous factor V Leiden was 3.4% and 2.6% and prothrombin G20210A was 2.0% and 1.1% in recipients and donors, respectively, similar frequencies to that of the general U.K. population. The 30-day and 1-year graft survival rates in recipients with thrombophilic mutations were 93% and 93%, compared with 88% and 82% in patients without these mutations (log-rank P =0.34). Thrombophilia in recipients (odds ratio 0.55; confidence interval 0.06-2.29; P =0.56) or in donors (odds ratio 1.53; confidence interval 0.27-5.74; P =0.46) did not correlate with graft loss at 30 days after transplantation. In contrast to recent reports, this study did not demonstrate an association between thrombophilia and renal allograft loss, and routine screening is not recommended.