864 resultados para Lithium-chloride
Resumo:
The cylindrical 'D'-size batteries were fabricated by polyaniline paste cathode and lithium foil anode sandwiched with microporous polypropylene separator. The electrolyte used was LiClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane. The results of charge/discharge curves, charge/discharge cycles, the short-circuit current, the open-circuit voltage storage and the change of discharge capacity with temperature, discharge current are reported.
Resumo:
Infrared spectroscopy was used to study the structural phase, transitions of laurylammonium chloride in the temperature range from 290 to 365K. It was shown that there is a solid-solid phase transition at 339 K with a pre-transition at 327 K. The infrared spectra indicated that virgin crystals at room temperature form a well-ordered phase with all-trans hydrocarbon chains, and the lengths of N-H...Cl hydrogen bonds are different. The spectra suggested that the gauche conformers begin to appear at temperature above 327 K. The spectra at high temperature over 339 K demonstrated that the interaction between the chains decreases, the partial ''melting'' of the chains is obvious, and the hydrogen bonds (N-H...Cl) have the same lengths. The main transition and pre-transition are mainly assigned to the intramolecular and intermolecular order-disorder changes, respectively.
Resumo:
The infrared spectra of the bilayer system dodecylammonium chloride has been studied as a function of temperature. Unusual splitting of some vibrational modes helps us to characterize the structure of different solid states. This study provided the evidence for the occurrence of an order-disorder phase transition whose onset occurs at 327 K and its completion ends at 339 K. In the low temperature phase below 327 K, the virgin crystals form a well-ordered phase with all-transhydrocarbon chains. In the intermediate state between 327 and 339 K, the data demonstrate the introduction of intramolecular as well as intermolecular disorder. The coexistence of solid and liquid-crystal-like states is shown by the persistence of factor group splittings together with the existence of defect bands in the wide intermediate temperature range. In the high temperature phase over 339 K the crystals convert to a liquid-crystal-like system with extensive motional and conformational disorder, but still show characteristics in their infrared spectra which indicate the presence of ordered segments in the hexagonal solid phase.
Resumo:
The compatibility and crystallization behaviour of the mixtures of poly (tetrahydrofuran-methyl methacrylate) diblock copolymer (PTHF-b-PMMA) with polyvinyl chloride has been studied. We found that the compatibility of these blends, in which there is special interaction between the homopolymer and the PMMA block of the copolymer, is much better than that of the AB/A type blends; and that the crystallization rate and crystallinity of PTHF microdomain changed greatly due to the swollen by PVC homopolymer. In this paper, these changes in cryatallization are well explained according to the theories of block copolymer blends and the density gradient model presented by JIANG Ming.
Resumo:
The utility of the high-temperature superconductor, YBa2Cu3O7-x as the cathode material for an all-solid-state lithium cell has been examined. The capacity of YBa2Cu3O7-x is 223 mA h g-1 and the discharge efficiency is > 92%. Measurements of a.c. impedance show that the charge-transfer resistance at the interface of the electrolyte/cathode is very low and increases with the depth-of-discharge of the battery. Studies using X-ray photoelectron spectroscopy (XPS) reveal that the cathode becomes doped with Li+ ions as the cell discharges.
Resumo:
Reaction of lanthanide trichlorides with two equivalents of sodium t-butylcyclopentadienide in THF gave rise to the bis(t-butylcyclopentadienyl)lanthanide chloride complexes [(Bu(t)Cp)2LnCl]2 (Ln = Pr, Gd, Er), which were characterized by elemental analysis, IR and H-1 NMR spectroscopy. In addition, the crystal structures of [(ButCp)2PrCl]2 (1) and [(ButCp)2GdCl]2 (2) were determined by single crystal X-ray diffraction at room temperature. The coordination number for Pr3+ and Gd3+ is 8 and the bond lengths Pr-Cl and Gd-Cl are 2.864(2) and 2.771(3) angstrom, respectively. The structural studies showed the complexes to have C2h symmetry.
Resumo:
The mechanism of electrochemical redox reactions of (tetra-phenylporphinato) managanese(III) perchlorate, (TPP)Mn(III)ClO4, was studied In the presence of chloride anions in dichloroethane solution. It was demonstrated that Mn(II) or Mn (III) centre can be coordinated with only one chloride anion, this result makes an about 100 mV negative shift of half-wave potential of Mn (III)/Mn (II) reduction. An equilibrium constant of 2.2 x 10(4) was determined for the complexation reaction of Cl- and Mn(III) centre.
Resumo:
The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modifed PEO-ER interface exhibits good reversibility. At 50-80-degrees-C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90% charge/discharge efficiency, and 54 W h kg-1 discharge energy density (on PAn weight basis) at 50-mu-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.
Resumo:
A wound-type cell with a polyaniline (PAn) positive electrode, a LiClO4-propylene carbonate (PC) electrolyte, and a lithium foil negative electrode has been constructed. The two electrodes are separated by a polypropylene separator. The PAn is deposited on carbon felt from a HClO4 solution containing aniline by galvanostatic or potentiostatic electrolysis. Using cyclic voltammetry charge/discharge cycles and charge/retention tests, the following results have been obtained: (i) reversibility of the charge/discharge reaction of the PAn electrode is very good; (ii) more than 50 charge/discharge cycles at 80% charge/discharge efficiency and 260 W h kg-1 discharge energy density can be achieved at 50 mA between 2 and 4 V; (iii) the open-circuit voltage and the capacity retention of the battery after storage at open-circuit for 60 days are 3.4 V and 33%, respectively.
Resumo:
The low-frequency Raman spectrum of n-decylammonium chloride was measured as a function of temperature in the temperature range from 290 to 340K, and the longitudinal acoustical mode vibration band was assigned. The results showed that there are two phase transitions at 313K and 321K, respectively. The phase transition at 313K is mainly induced by change of hydrocarbon chain conformations, while that at 321K is mainly induced by change of order degree of molecular packing. The results suggest low-frequency Raman spectroscopy is a useful probe of structural phase transition for long-chain compounds.
Resumo:
Reaction of lanthanoid trichloride with two equivalents of sodium t-butylcyclopentadienide in tetrahydrofuran affords bis(t-butylcyclopentadienyl)lanthanoid chloride complexes (t-BuCp)2LnCl. nTHF (Ln = Pr, Nd, n = 2; Ln = Gd, Yb, n = 1). The compound (t-BuCp)2PrCl.2THF (1) crystallizes from THF in monoclinic space group P2(1)/c with unit cell dimensions a = 15.080(3), b = 8.855(2), c = 21.196(5) angstrom, beta = 110.34(2)degrees, V = 2653.9 angstrom-3 and D(calcd) = 1.41 g/cm3 for Z = 4. The central metal Pr is coordinated to two t-BuCp ring centroids, one chlorine atom and two THF forming a distorted trigonal bipyramid. The crystal of (t-BuCp)2YbCl.THF (2) belongs to the monoclinic crystal system, space group P2(1)/n with a = 7.726(1), b = 12.554(2), c = 23.200(6) angstrom, beta = 97.77(2)degrees, V = 2229.56 angstrom-3, D(calcd) = 1.50 g/cm3 and Z = 4. The t-BuCp ring centroids, the chlorine atom and the oxygen atom of the THF describe a distorted tetrahedron around the central ion of ytterbium.
Resumo:
The potential-response of a microdisk electrode made with a chloride-doped polypyrrole (PPY) film on a carbon fibre (CF) has been examined. The effect of the polymerization conditions on the response characteristics is discussed. The optimum conditions for preparing the electrode are: cycling potential from +0.8 to +1.0 V in 0.1-0.2M pyrrole (Py) containing 0.1M LiCl, electropolymerization time 15-20 min. The electrode gives a Nernstian response of 56-58 mV/pCl and a detection limit of 3.6 x 10(-5)M chloride. It has the advantages of low resistance, short conditioning time and fast response. It has been used satisfactorily for detection of chloride in serum.