863 resultados para Lipid Lowering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomarkers of blood lipid modification and oxidative stress have been associated with increased cardiovascular morbidity. We sought to determine whether these biomarkers were related to functional indices of stenosis severity among patients with stable coronary artery disease. We studied 197 consecutive patients with stable coronary artery disease due to single vessel disease. Fractional flow reserve (FFR) ≤ 0.80 was assessed as index of a functionally significant lesion. Serum levels of secretory phospholipase A2 (sPLA2) activity, secretory phospholipase A2 type IIA (sPLA2-IIA), myeloperoxydase (MPO), lipoprotein-associated phospholipase A2 (Lp-PLA2), and oxidized low-density lipoprotein (OxLDL) were assessed using commercially available assays. Patients with FFR > 0.8 had higher sPLA2 activity, sPLA2 IIA, and OxLDL levels than patients with FFR ≤ 0.8 (21.25 [16.03-27.28] vs 25.85 [20.58-34.63] U/mL, p < 0.001, 2.0 [1.5-3.4] vs 2.6 [2.0-3.4] ng/mL, p < 0.01; and 53.0 [36.0-71.0] vs 64.5 [50-89.25], p < 0.001 respectively). Patients with FFR > 0.80 had similar Lp-PLA2 and MPO levels versus those with FFR ≤ 0.8. sPLA2 activity, sPLA2 IIA significantly increased area under the curve over baseline characteristics to predict FFR ≤ 0.8 (0.67 to 0.77 (95 % confidence interval [CI]: 0.69-0.85) p < 0.01 and 0.67 to 0.77 (95 % CI: 0.69-0.84) p < 0.01, respectively). Serum sPLA2 activity as well as sPLA2-IIA level is related to functional characteristics of coronary stenoses in patients with stable coronary artery disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dyslipidemia, a major component of the metabolic syndrome and an important cardiovascular risk factor, is one of the commonest comorbidity associated with morbid obesity. The aim of this paper is to show that RYGBP markedly improves dyslipidemia and that this improvement maintains over time. Patients and Methods: Prospectively updated databank for bariatric patients. Patients undergoing RYGBP have yearly blood tests during follow-up. The results for lipids at one to five years were compared with preoperative values. Results: The mean excess BMI loss after one and five years was 77,9 % and 72,3%respectively. After one year, there was a significant reduction of the mean total cholesterol, LDL-cholesterol, total cholesterol/HDL ratio and triglyceride values, which maintained up to five years, and an increase of the HDL fraction, which progressed until five years. The proportion of patients with abnormal values decreased from 24,3 to 6,2% for total cholesterol, from 45,1 to 11,7 %for HDL, from 53,3 to 21,9 for LDL, and from 40,5 to 10 % for triglycerides, with no significant change between three and five years, despite some weight regain. Conclusions: RYGBP rapidly improves all components of dyslipidemia, and thereby reduces the overall cardiovascular risk in operated patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear receptors (NRs) are ligand-dependent transcription factors whose activation affects genes controlling vital processes. Among them, the peroxisome proliferator-activated receptors (PPARs) have emerged as links between lipids, metabolic diseases, and innate immunity. PPARs are activated by fatty acids and their derivatives, many of which also signal through membrane receptors, thereby creating a lipid signaling network between the cell surface and the nucleus. Tissues that play a role in whole-body metabolic homeostasis, such as adipose tissue, liver, skeletal muscle, intestines, and blood vessel walls, are prone to inflammation when metabolism is disturbed, a complication that promotes type 2 diabetes and cardiovascular disease. This review discusses the protective roles of PPARs in inflammatory conditions and the therapeutic anti-inflammatory potential of PPAR ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized lipid and lipoprotein changes associated with a lopinavir/ritonavir-containing regimen. We enrolled previously antiretroviral-naive patients participating in the Swiss HIV Cohort Study. Fasting blood samples (baseline) were retrieved retrospectively from stored frozen plasma and posttreatment (follow-up) samples were collected prospectively at two separate visits. Lipids and lipoproteins were analyzed at a single reference laboratory. Sixty-five patients had two posttreatment lipid profile measurements and nine had only one. Most of the measured lipids and lipoprotein plasma concentrations increased on lopinavir/ritonavir-based treatment. The percentage of patients with hypertriglyceridemia (TG >150 mg/dl) increased from 28/74 (38%) at baseline to 37/65 (57%) at the second follow-up. We did not find any correlation between lopinavir plasma levels and the concentration of triglycerides. There was weak evidence of an increase in small dense LDL-apoB during the first year of treatment but not beyond 1 year (odds ratio 4.5, 90% CI 0.7 to 29 and 0.9, 90% CI 0.5 to 1.5, respectively). However, 69% of our patients still had undetectable small dense LDL-apoB levels while on treatment. LDL-cholesterol increased by a mean of 17 mg/dl (90% CI -3 to 37) during the first year of treatment, but mean values remained below the cut-off for therapeutic intervention. Despite an increase in the majority of measured lipids and lipoproteins particularly in the first year after initiation, we could not detect an obvious increase of cardiovascular risk resulting from the observed lipid changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44.0 (sd 3.2)% of labelled carbons were recovered in plasma glucose in males v. 41.9 (sd 2.3)% in females (NS), and 42.9 (sd 3.7)% of labelled carbons were recovered in breath CO2 in males v. 43.0 (sd 4.5)% in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0.05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16.4 (sd 5.2), P < 0.05), but it was not suppressed in females ( -1.3 (sd 4.7)%). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the meat lipid profile from Devon beef steers finished in pearl millet (Pennisetum americanum) pasture and fed at different rates of concentrate supplementary diet. Twelve steers weighing 270 kg, at 12‑month‑average initial age, were randomly distributed into three treatments: pearl millet pasture; and pearl millet pasture plus a concentrate equivalent at 0.5 or 1.0% of body weight, with two replicates. Total contents of saturated and unsaturated fatty acids, the polyunsaturated:saturated ratio and other relevant fatty acids as the vaccenic acid, conjugated linoleic acid, omega‑3, and omega‑6 were not affected by the consumption of a concentrate supplement at 0.5 or 1.0% live weight. However, the 0.5% supplementation level reduced the concentration of dihomo‑γ‑linolenic fatty acid (C20: 3 n‑6), while the 1.0% supplementation level elevated the content of docosahexaenoic (DHA) (C22: 6 n‑3) fatty acid, and the omega‑6:omega‑3 ratio in meat. Consumption of up to 1.0% energy supplementation increases the omega‑6:omega‑3 ratio in meat from Devon steers grazing on pearl millet pasture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: La prévalence de la «non-alcoholic fatty liver disease (NAFLD)» dans les pays industrialisés augment de manière exponentielle. La NAFLD se développe d'une simple stéatose hépatique jusqu'à l'hépatite, puis à la cirrhose. De plus, la stéatose hépatique est fréquemment accompagnée par une résistance à l'insuline, une des causes principales du diabète. Les lipides intermédiaires, tels que céramides et diacylglycérols, ont été décrits comme induisant la résistance à l'insuline. Cependant, nous avons démontré dans notre modèle de stéatose hépatique, que les souris présentant une invalidation de la protéine «microsomal triglyceride transfer protein» (Mtpp) au niveau hépatique, ne développent pas de résistance à l'insuline. Ceci suggère fortement l'existence d'autres mécanismes susceptibles d'induire la résistance à l'insuline. Résultats: Grâce à une analyse de Microarray, nous avons observé une augmentation de l'expression des gènes «cell-death inducing DFFA-like effector c (CIDEC)», «lipid storage droplet protein 5 (LSDP5)» et «Bernardinelli-Seip congenital lipodystrophy 2 homolog (Seipin)» dans le foie des souris Mttp. Ces gènes ont récemment été identifiés comme des protéines localisées autour des gouttelettes lipidiques. Nous avons également constaté que la souris Mttp développe plutôt une microstéatose (petites gouttelettes lipidiques) qu'une macrostéatose qui est normalement observée chez les patients avec NAFLD. Nous avons étudié l'expression des gènes associés aux gouttelettes lipidiques chez les patients obèses avec stéatose hépatique, avec ou sans résistance à l'insuline. Comparés aux sujets sains sans stéatose hépatique, les patients avec la stéatose ont une expression significativement plus élevée. De manière intéressante, les patients avec résistance à l'insuline ont une diminution de ces expressions. Conclusion : Ces données suggèrent que les gènes des gouttelettes lipidiques sont impliqués dans le développement de la stéatose hépatique chez l'homme et peut-être contribue à la mise en place de la résistance à l'insuline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid and fatty acid composition of rat brain was studied during its development both in vivo and in an aggregating cell culture system. Although the amount of lipid present in the cultures was very low, the increase in glycolipid content corresponded closely to the period of intense myelin formation. Very long chain fatty acids (hydroxylated and unsubstituted) were present in 41-day cultures. In comparison to the in vivo situation, myelination was delayed in vitro and, after 40 days in culture, cholesterol esters were 5-fold higher than in vivo, indicating that demyelination was occurring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT) and its modulation in pacu (Piaractus mesopotamicus). One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50%) and two lipid levels (4 and 8%). Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of"emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.