993 resultados para Lactose-specific lectin
Resumo:
The complete amino acid sequence of winged bean basic agglutinin (WBA I) was obtained by a combination of manual and gas-phase sequencing methods. Peptide fragments for sequence analyses were obtained by enzymatic cleavages using trypsin and Staphylococcus aureus V8 endoproteinase and by chemical cleavages using iodosobenzoic acid, hydroxylamine, and formic acid. COOH-terminal sequence analysis of WBA I and other peptides was performed using carboxypeptidase Y. The primary structure of WBA I was homologous to those of other legume lectins and more so to Erythrina corallodendron. Interestingly, the sequence shows remarkable identities in the regions involved in the association of the two monomers of E. corallodendron lectin. Other conserved regions are the double metal-binding site and residues contributing to the formation of the hydrophobic cavity and the carbohydrate-binding site. Chemical modification studies both in the presence and absence of N-acetylgalactosamine together with sequence analyses of tryptophan-containing tryptic peptides demonstrate that tryptophan 133 is involved in the binding of carbohydrate ligands by the lectin. The location of tryptophan 133 at the active center of WBA I for the first time subserves to explain a role for one of the most conserved residues in legume lectins.
Resumo:
Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.
Resumo:
The x-ray crystal structure of the tetrameric T-antigen-binding lectin from peanut, M(r) 110,000, has been determined by using the multiple isomorphous replacement method and refined to an R value of 0.218 for 22,155 reflections within the 10- to 2.95-A resolution range. Each subunit has essentially the same characteristic tertiary fold that is found in other legume lectins. The structure, however, exhibits an unusual quaternary arrangement of subunits. Unlike other well-characterized tetrameric proteins with identical subunits, peanut lectin has neither 222 (D2) nor fourfold (C4) symmetry. A noncrystallographic twofold axis relates two halves of the molecule. The two monomers in each half are related by a local twofold axis. The mutual disposition of the axes is such that they do not lead to a closed point group. Furthermore, the structure of peanut lectin demonstrates that differences in subunit arrangement in legume lectins could be due to factors intrinsic to the protein molecule and, contrary to earlier suggestions, are not necessarily caused by interactions involving covalently linked sugar. The structure provides a useful framework for exploring the structural basis and the functional implications of the variability in the subunit arrangement in legume lectins despite all of them having nearly the same subunit structure, and also for investigating the general problem of "open" quaternary assembly in oligomeric proteins.
Resumo:
Titration calorimetry measurements of the binding of methyl alpha-D-mannopyranoside (Me alpha Man), D-mannopyranoside (Man), methyl alpha-D-glucopyranoside (Me alpha Glu), and D-glucopyranoside (Glu) to concanavalin A (Con A), pea lectin, and lentil lectin were performed at 281 and 292 K in 0.01 M dimethylglutaric acid-NaOH buffer (pH 6.9) containing 0.15 M NaCl and Mn+2 and Ca+2 ions. The site binding enthalpies, delta H, are the same at both temperatures and range from -28.4 +/- 0.9 (Me alpha Man) to -16.6 +/- 0.5 kJ mol-1 (Glu) for Con A, from -26.2 +/- 1.1 (Me alpha Man) to -12.8 +/- 0.4 kJ mol-1 (Me alpha Glu) for pea lectin, and from -16.6 +/- 0.7 (Me alpha Man) to -8.0 +/- 0.2 kJ mol-1 (Me alpha Glu) for lentil lectin. The site binding constants range from 17 +/- 1 x 10(3) M-1 (Me alpha Man to Con A at 281.2 K) to 230 +/- 20 M-1 (Glu to lentil lectin at 292.6 K) and exhibit high specificity for Con A where they are in the Me alpha Man:Man:Me alpha Glu:Glu ratio of 21:4:5:1, while the corresponding ratio is 5:2:1.5:1 for pea lectin and 4:2:2:1 for lentil lectin. The higher specificity for Con A indicates more interactions between the amino acid residues at the binding site and the carbohydrate ligand than for the pea and lentil lectin-carbohydrate complexes. The carbohydrate-lectin binding results exhibit enthalpy-entropy compensation in that delta Hb (kJ mol-1) = -1.67 +/- 0.06 x 10(4) + (1.30 +/- 0.12)T(K) delta Sb (J mol-1K-1). Differential scanning calorimetry measurements on the thermal denaturation of the lectins and their carbohydrate complexes show that the Con A tetramer dissociates into monomers, while the pea and lentil lectin dimers dissociate into two submonomer fragments. At the denaturation temperature, one carbohydrate binds to each monomer of Con A and the pea and lentil lectins. Complexation with the carbohydrate increases the denaturation temperature of the lectin and the magnitude of the increases yield binding constants in agreement with the determinations from titration calorimetry.
Resumo:
The basic lectin from winged bean (Psophocarpus tetragonolobus) could be crystallized using polyethyleneglycol (PEG) 4000 (I), PEG 8000 (II) and 2-methylpentane-2,4-diol (MPD) (III) as precipitants. Crystal forms I and II grew in the presence of methyl-α-Image -galactopyranoside or N -acetylgalactosamine while III grew in the absence of sugar. The three forms have the same space group (P21212) and similar unit cell dimensions with two dimeric molecules in the asymmetric unit. The unit cell dimensions are a = 156·8 Å, b = 89·0 Å, c = 73·3 Å for I, a = 155·5 Å, b = 92·3 Å, c = 72·5 Å for II and a = 148·3 Å, b = 90·7 Å, c = 73·8 Å for III. The crystals, particularly those grown using PEG 8000, are suitable for high resolution X-ray analysis, which is in progress.
Resumo:
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction
Resumo:
The thermodynamics of the binding of D-galactopyranoside (Gal), 2-acetamido-2-deoxygalactopyranoside (GalNAc), methyl-alpha-D-galactopyranoside, and methyl-beta-D-galactopyranoside to the basic agglutinin from winged bean (WBAI) in 0.02 M sodium phosphate and 0.15 M sodium chloride buffer have been investigated from 298.15 to 333.15 K by titration calorimetry and at the denaturation temperature by differential scanning calorimetry (DSC). WBAI is a dimer with two binding sites. The titration calorimetry yielded single-site binding constants ranging from 0.56 +/- 0.14 x 10(3) M-1 for Gal at 323.15 K to 7.2 +/- 0.5 x 10(3) M-1 for GalNAc at 298.15 K and binding enthalpies ranging from -28.0 +/- 2.0 kJ mol-1 for GalNAc at 298.15 K to -14.3 +/- 0.1 kJ mol-1 for methyl-beta-D-galactopyranoside at 322.65 K. The denaturation transition consisted of two overlapping peaks over the pH range 5.6-7.4. Fits of the differential scanning calorimetry data to a two-state transition model showed that the low temperature transition (341.6 +/- 0.4 K at pH 7.4) consisted of two domains unfolding as a single entity while the higher temperature transition (347.8 +/- 0.6 K at pH 7.4) is of the remaining WBAI dimer unfolding into two monomers. Both transitions shift to higher temperatures and higher calorimetric enthalpies with increase in added ligand concentration at pH 7.4. Analysis of the temperature increase as a function of added ligand concentration suggests that one ligand binds to the two domains unfolding at 341.6 +/- 0.6 K and one ligand binds to the domain unfolding at 347.8 +/- 0.6 K.
Resumo:
A sensitive and simple method for quantification of antibodies against small molecules is described using DNP-lysozyme as the enzyme conjugate. The anti-DNP antiserum was raised against DNP-bovin serum albumin conjugate. Anti-DNP antibody or its monovalent fragment (Fab) reduced the enzyme activity of DNP-lysozyme conjugate in a concentration-dependent manner. The inhibition of enzyme activity is a specific measure of the antibody and Fab content of the sample. The specificity of the reaction was assessed by reduction of antibody-induced inhibition by DNP-lysine. The ability of DNP-lysine to reduce the antibody-induced inhibition of DNP-lysozyme activity also makes possible a sensitive assay for DNP-lysine.
Resumo:
Lectins (phytohaemagglutinin) are known to have the unique property of binding with certain specific sugars, polysaccharides and glycoproteins. Although the kinetics of interaction between lectins and sugar have been extensively studied, the binding characteristics of the lectins with various glycoproteins are not well understood. In this laboratory a systematic study has been initiated in relation to the interaction of lectins with glycoproteins. Concanavalin A is known to bind alpha-glucosides, mannosides and biopolymers having these sugar configurations. A galactose binding protein from caster bean has been purified to homogeneity and was found to contain mannose. This lectin was used as the source of glycoprotein for studying its interaction with concanavalin A. This study showed that the interaction is temperature dependent and the dissociation is time and alpha-methyl glucoside concentration dependent. This has led to speculate a model for cell-lectin interaction. Using concanavalin A it has been shown that all the lysosomal enzymes from brain studied were glycoprotein in nature. Moreover, using Sepharose-bound concanavalin A it has been possible to devise a method by which these lysosomal enzymes could be purified considerably. With the knowledge that the interaction between lectin and glycoprotein is not only dependent on the specific sugar present in the glycoprotein, but also on the nature of the glycoprotein it was possible to develop a novel method for immobilizing various glycoprotein enzymes, such as arylsulphatase A, hyaluronidase and glucose oxidase.
Resumo:
Increasing antimicrobial resistance in bacteria has led to the need for better understanding of antimicrobial usage patterns. In 1999, the World Organisation for Animal Health (OIE) recommended that an international ad hoc group should be established to address human and animal health risks related to antimicrobial resistance and the contribution of antimicrobial usage in veterinary medicine. In European countries the need for continuous recording of the usage of veterinary antimicrobials as well as for animal species-specific and indication-based data on usage has been acknowledged. Finland has been among the first countries to develop prudent use guidelines in veterinary medicine, as the Ministry of Agriculture and Forestry issued the first animal species-specific indication-based recommendations for antimicrobial use in animals in 1996. These guidelines have been revised in 2003 and 2009. However, surveillance on the species-specific use of antimicrobials in animals has not been performed in Finland. This thesis provides animal species-specific information on indication-based antimicrobial usage. Different methods for data collection have been utilized. Information on antimicrobial usage in animals has been gathered in four studies (studies A-D). Material from studies A, B and C have been used in an overlapping manner in the original publications I-IV. Study A (original publications I & IV) presents a retrospective cross-sectional survey on prescriptions for small animals at the Veterinary Teaching Hospital of the University of Helsinki. Prescriptions for antimicrobial agents (n = 2281) were collected and usage patterns, such as the indication and length of treatment, were reviewed. Most of the prescriptions were for dogs (78%), and primarily for the treatment of skin and ear infections most of which were treated with cephalexin for a median period of 14 days. Prescriptions for cats (18%) were most often for the treatment of urinary tract infections with amoxicillin for a median length of 10 days. Study B (original publication II) was a retrospective cross-sectional survey where prescriptions for animals were collected from 17 University Pharmacies nationwide. Antimicrobial prescriptions (n = 1038) for mainly dogs (65%) and cats (19%) were investigated. In this study, cephalexin and amoxicillin were also the most frequently used drugs for dogs and cats, respectively. In study C (original publications III & IV), the indication-based usage of antimicrobials of practicing veterinarians was analyzed by using a prospective questionnaire. Randomly selected practicing veterinarians in Finland (n = 262) recorded all their antimicrobial usage during a 7-day study period. Cattle (46%) with mastitis were the most common patients receiving antimicrobial treatment, generally intramuscular penicillin G or intramammary treatment with ampicillin and cloxacillin. The median length of treatment was four days, regardless of the route of administration. Antimicrobial use in horses was evaluated in study D, the results of which are previously unpublished. Firstly, data collected with the prospective questionnaire from the practicing veterinarians showed that horses (n = 89) were frequently treated for skin or wound infections by using penicillin G or trimethoprim-sulfadiazine. The mean duration of treatment was five to seven days. Secondly, according to retrospective data collected from patient records, horses (n = 74) that underwent colic surgery at the Veterinary Teaching Hospital of the University of Helsinki were generally treated according to national and hospital recommendations; penicillin G and gentamicin was administered preoperatively and treatment was continued for a median of three days postoperatively. In conclusion, Finnish veterinarians followed well the national prudent use guidelines. Narrow-spectrum antimicrobials were preferred and, for instance, fluoroquinolones were used sparingly. Prescription studies seemed to give good information on antimicrobials usage, especially when combined with complementary information from patient records. A prospective questionnaire study provided a fair amount of valuable data on several animal species. Electronic surveys are worthwhile exploiting in the future.
Resumo:
This thesis has two items: biofouling and antifouling in paper industry. Biofouling means unwanted microbial accumulation on surfaces causing e.g. disturbances in industrial processes, contamination of medical devices or of water distribution networks. Antifouling focuses on preventing accumulation of the biofilms in undesired places. Deinococcus geothermalis is a pink-pigmented, thermophilic bacterium, and extremely resistant towards radiation, UV-light and desiccation and known as a biofouler of paper machines forming firm and biocide resistant biofilms on the stainless steel surfaces. The compact structure of biofilm microcolonies of D. geothermalis E50051 and the adhesion into abiotic surfaces were investigated by confocal laser scanning microscope combined with carbohydrate specific fluorescently labelled lectins. The extracellular polymeric substance in D. geothermalis microcolonies was found to be a composite of at least five different glycoconjugates contributing to adhesion, functioning as structural elements, putative storages for water, gliding motility and likely also to protection. The adhesion threads that D. geothermalis seems to use to adhere on an abiotic surface and to anchor itself to the neighbouring cells were shown to be protein. Four protein components of type IV pilin were identified. In addition, the lectin staining showed that the adhesion threads were covered with galactose containing glycoconjugates. The threads were not exposed on planktic cells indicating their primary role in adhesion and in biofilm formation. I investigated by quantitative real-time PCR the presence of D. geothermalis in biofilms, deposits, process waters and paper end products from 24 paper and board mills. The primers designed for doing this were targeted to the 16S rRNA gene of D. geothermalis. We found D. geothermalis DNA from 9 machines, in total 16 samples of the 120 mill samples searched for. The total bacterial content varied in those samples between 107 to 3 ×1010 16S rRNA gene copies g-1. The proportion of D. geothermalis in those same samples was minor, 0.03 1.3 % of the total bacterial content. Nevertheless D. geothermalis may endanger paper quality as its DNA was shown in an end product. As an antifouling method towards biofilms we studied the electrochemical polarization. Two novel instruments were designed for this work. The double biofilm analyzer was designed for search for a polarization program that would eradicate D. geothermalis biofilm or from stainless steel under conditions simulating paper mill environment. The Radbox instrument was designed to study the generation of reactive oxygen species during the polarization that was effective in antifouling of D. geothermalis. We found that cathodic character and a pulsed mode of polarization were required to achieve detaching D. geothermalis biofilm from stainless steel. We also found that the efficiency of polarization was good on submerged, and poor on splash area biofilms. By adding oxidative biocides, bromochloro-5,5-dimethylhydantoin, 2,2-dibromo-2-cyanodiacetamide or peracetic acid gave additive value with polarization, being active on splash area biofilms. We showed that the cathodically weighted pulsed polarization that was active in removing D. geothermalis was also effective in generation of reactive oxygen species. It is possible that the antifouling effect relied on the generation of ROS on the polarized steel surfaces. Antifouling method successful towards D. geothermalis that is a tenacious biofouler and possesses a high tolerance to oxidative stressors could be functional also towards other biofoulers and applicable in wet industrial processes elsewhere.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.