802 resultados para LIQUID INTERFACES
Resumo:
Because of the large variability in the pharmacokinetics of anti-HIV drugs, therapeutic drug monitoring in patients may contribute to optimize the overall efficacy and safety of antiretroviral therapy. An LC-MS/MS method for the simultaneous assay in plasma of the novel antiretroviral agents rilpivirine (RPV) and elvitegravir (EVG) has been developed to that endeavor. Plasma samples (100 μL) extraction is performed by protein precipitation with acetonitrile, and the supernatant is subsequently diluted 1:1 with 20-mM ammonium acetate/MeOH 50:50. After reverse-phase chromatography, quantification of RPV and EVG, using matrix-matched calibration samples, is performed by electrospray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The stable isotopic-labeled compounds RPV-(13) C6 and EVG-D6 were used as internal standards. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<6.4%), as well as EVG and RPV short and long-term stability in plasma. Calibration curves were validated over the clinically relevant concentrations ranging from 5 to 2500 ng/ml for RPV and from 50 to 5000 ng/ml for EVG. The method is precise (inter-day CV%: 3-6.3%) and accurate (3.8-7.2%). Plasma samples were found to be stable (<15%) in all considered conditions (RT/48 h, +4°C/48 h, -20°C/3 months and 60°C/1 h). Selected metabolite profiles analysis in patients' samples revealed the presence of EVG glucuronide, that was well separated from parent EVG, allowing to exclude potential interferences through the in-source dissociation of glucuronide to parent drug. This new, rapid and robust LCMS/MS assay for the simultaneous quantification of plasma concentrations of these two major new anti-HIV drugs EVG and RPV offers an efficient analytical tool for clinical pharmacokinetics studies and routine therapeutic drug monitoring service. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic? R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis.
Resumo:
Scintillation counting is one of the most important developments in the application of radioisotopes to procedures needed by scientists, physicians, engineers, and technicians from many diverse discipline for the detection and quantitative measurement of radioactivity. In fact, Scintillation is the most sensitive and versatile technique for the detection and quantification ofradioactivity. Particularly, Solid and Liquid scintillation measurement are,nowadays, standard laboratory methods in the life-sciences for measuringradiation from gamma- and beta-emitting nuclides, respectively. Thismethodology is used routinely in the vast majority of diagnostic and/or researchlaboratories from those of biochemistry and biology to clinical departments.
Resumo:
In this article, selected examples of applications of liquid chromatography coupled to mass spectrometry are given. The examples include the analysis of i) impurities in manufactured, pharmaceutical or synthesis products, ii) polyphenols in natural products, and iii) phytohormones in plant extracts. Finally, examples of applications of molecular characterization via flow injection analysis by electron spray ionization mass spectrometry (ESI-MS) are also given.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
Capillary electrophoresis has drawn considerable attention in the past few years, particularly in the field of chiral separations because of its high separation efficiency. However, its routine use in therapeutic drug monitoring is hampered by its low sensitivity due to a short optical path. We have developed a capillary zone electrophoresis (CZE) method using 2mM of hydroxypropyl-β-cyclodextrin as a chiral selector, which allows base-to-base separation of the enantiomers of mianserin (MIA), desmethylmianserin (DMIA), and 8-hydroxymianserin (OHMIA). Through the use of an on-column sample concentration step after liquid-liquid extraction from plasma and through the presence of an internal standard, the quantitation limits were found to be 5 ng/mL for each enantiomer of MIA and DMIA and 15 ng/mL for each enantiomer of OHMIA. To our knowledge, this is the first published CE method that allows its use for therapeutic monitoring of antidepressants due to its sensitivity down to the low nanogram range. The variability of the assays, as assessed by the coefficients of variation (CV) measured at two concentrations for each substance, ranged from 2 to 14% for the intraday (eight replicates) and from 5 to 14% for the interday (eight replicates) experiments. The deviations from the theoretical concentrations, which represent the accuracy of the method, were all within 12.5%. A linear response was obtained for all compounds within the range of concentrations used for the calibration curves (10-150 ng/mL for each enantiomer of MIA and DMIA and 20-300 ng/mL for each enantiomer of OHMIA). Good correlations were calculated between [(R) + (S)]-MIA and DMIA concentrations measured in plasma samples of 20 patients by a nonchiral gas chromatography method and CZE, and between the (R)- and (S)-concentrations of MIA and DMIA measured in plasma samples of 37 patients by a previously described chiral high-performance liquid chromatography method and CZE. Finally, no interference was noted from more than 20 other psychotropic drugs. Thus, this method, which is both sensitive and selective, can be routinely used for therapeutic monitoring of the enantiomers of MIA and its metabolites. It could be very useful due to the demonstrated interindividual variability of the stereoselective metabolism of MIA.
Resumo:
The main goal of this special issue was to gather contributions dealing with the latest breakthrough methods for providing value compounds and energy/fuel from waste valorization. Valorization is a relatively new approach in the area of industrial wastes management, a key issue to promote sustainable development. In this field, the recovery of value-added substances, such as antioxidants, proteins, vitamins, and so forth, from the processing of agroindustrial byproducts, is worth mentioning. Another important valorization approach is the use of biogas from waste treatment plants for the production of energy. Several approaches involving physical and chemical processes, thermal and biological processes that ensure reduced emissions and energy consumptions were taken into account. The papers selected for this topical issue represent some of the mostly researched methods that currently promote the valorization of wastes to energy and useful materials ...
Resumo:
OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.
Resumo:
Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
A simple method using liquid chromatography-linear ion trap mass spectrometry for simultaneous determination of testosterone glucuronide (TG), testosterone sulfate (TS), epitestosterone glucuronide (EG) and epitestosterone sulfate (ES) in urine samples was developed. For validation purposes, a urine containing no detectable amount of TG, TS and EG was selected and fortified with steroid conjugate standards. Quantification was performed using deuterated testosterone conjugates to correct for ion suppression/enhancement during ESI. Assay validation was performed in terms of lower limit of detection (1-3ng/mL), recovery (89-101%), intraday precision (2.0-6.8%), interday precision (3.4-9.6%) and accuracy (101-103%). Application of the method to short-term stability testing of urine samples at temperature ranging from 4 to 37 degrees C during a time-storage of a week lead to the conclusion that addition of sodium azide (10mg/mL) is required for preservation of the analytes.
Resumo:
We present a new phenomenological approach to nucleation, based on the combination of the extended modified liquid drop model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.
Resumo:
Rapport de synthèse1. Partie de laboratoireCette première étude décrit le développement et la validation, selon les standards internationaux, de deux techniques de mesure des concentrations sanguines de voriconazole, un nouvel agent antifongique à large spectre: 1) la chromatographic en phase liquide à haute pression et 2) le bio-essai utilisant une souche mutante de Candida hypersensible au voriconazole. Ce travail a aussi permis de mettre en évidence une importante et imprévisible variabilité inter- et intra-individuelle des concentrations sanguines de voriconazole malgré l'utilisation des doses recommandées par le fabriquant. Ce travail a été publié dans un journal avec "peer-review": "Variability of voriconazole plasma levels measured by new high- performance liquid chromatography and bioassay methods" by A. Pascual, V. Nieth, T. Calandra, J. Bille, S. Bolay, L.A. Decosterd, T. Buclin, P.A. Majcherczyk, D. Sanglard, 0. Marchetti. Antimicrobial Agents Chemotherapy, 2007; 51:137-432. Partie CliniqueCette deuxième étude a évalué de façon prospective l'impact clinique des concentrations sanguines de voriconazole sur l'efficacité et sécurité thérapeutique chez des patients atteints d'infections fongiques. Des concentrations sanguines élevées étaient significativement associés à la survenue d'une toxicité neurologique (encéphalopathie avec confusion, hallucinations et myoclonies) et des concentrations sanguines basses à une réponse insuffisante au traitement antifongique (persistance ou progression des signes cliniques et radiologiques de l'infection). Dans la majorité des cas, un ajustement de la dose de voriconazole, sur la base des concentrations mesurées, a abouti à une récupération neurologique complète ou à une résolution de l'infection, respectivement. Ce travail a été publié dans un journal avec "peer-review": " Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses Improves Efficacy and Safety Outcomes" by A. Pascual, T. Calandra, S. Bolay, T. Buclin, J. Bille, and O. Marchetti. Clinical Infectious Diseases, 2008 January 15; 46(2): 201-11.Ces deux études, financées de façon conjointe par un "grant" international de la Société suisse d'infectiologie et la Société internationale de maladies infectieuses et par la Fondation pour le progrès en microbiologie médicale et maladies infectieuses (FAMMID, Lausanne), ont été réalisées au sein du Service des Maladies Infectieuses, Département de Médecine, au CHUV, en étroite collaboration avec la Division de Pharmacologie Clinique, Département de Médecine, au CHUV et l'Institut de Microbiologie du CHUV et de l'Université de Lausanne.
Resumo:
Access to new biological sources is a key element of natural product research. A particularly large number of biologically active molecules have been found to originate from microorganisms. Very recently, the use of fungal co-culture to activate the silent genes involved in metabolite biosynthesis was found to be a successful method for the induction of new compounds. However, the detection and identification of the induced metabolites in the confrontation zone where fungi interact remain very challenging. To tackle this issue, a high-throughput UHPLC-TOF-MS-based metabolomic approach has been developed for the screening of fungal co-cultures in solid media at the petri dish level. The metabolites that were overexpressed because of fungal interactions were highlighted by comparing the LC-MS data obtained from the co-cultures and their corresponding mono-cultures. This comparison was achieved by subjecting automatically generated peak lists to statistical treatments. This strategy has been applied to more than 600 co-culture experiments that mainly involved fungal strains from the Fusarium genera, although experiments were also completed with a selection of several other filamentous fungi. This strategy was found to provide satisfactory repeatability and was used to detect the biomarkers of fungal induction in a large panel of filamentous fungi. This study demonstrates that co-culture results in consistent induction of potentially new metabolites.
Resumo:
A sensitive method was developed for quantifying a wide range of cannabinoids in oral fluid (OF) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These cannabinoids include a dagger(9)-tetrahydrocannabinol (THC), 11-hydroxy-a dagger(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), a dagger(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc), and a dagger(9)-tetrahydrocannabinol glucuronide (THC-gluc). Samples were collected using a Quantisal (TM) device. The advantages of performing a liquid-liquid extraction (LLE) of KCl-saturated OF using heptane/ethyl acetate versus a solid-phase extraction (SPE) using HLB copolymer columns were determined. Chromatographic separation was achieved in 11.5 min on a Kinetex (TM) column packed with 2.6-mu m core-shell particles. Both positive (THC, 11-OH-THC, CBN, and CBD) and negative (THCCOOH, THC-gluc, THCCOOH-gluc, and THC-A) electrospray ionization modes were employed with multiple reaction monitoring using a high-end AB Sciex API 5000 (TM) triple quadrupole LC-MS/MS system. Unlike SPE, LLE failed to extract THC-gluc and THCCOOH-gluc. However, the LLE method was more sensitive for the detection of THCCOOH than the SPE method, wherein the limit of detection (LOD) and limit of quantification (LOQ) decreased from 100 to 50 pg/ml and from 500 to 80 pg/ml, respectively. The two extraction methods were successfully applied to OF samples collected from volunteers before and after they smoked a homemade cannabis joint. High levels of THC were measured soon after smoking, in addition to significant amounts of THC-A. Other cannabinoids were found in low concentrations. Glucuronide conjugate levels were lower than the method's LOD for most samples. Incubation studies suggest that glucuronides could be enzymatically degraded by glucuronidase prior to OF collection