996 resultados para LAST GLACIAL PERIOD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reconstructs Late Quaternary paleoceanographic changes in the western South Atlantic Ocean based on sedimentary core GL-77, recovered from the lower continental slope in the Campos basin, offshore SE Brazil. The studied interval comprises the last 130 ka. Changes in sea surface temperature (SST) and paleoproductivity were estimated using the total planktonic foraminiferal fauna and oxygen isotope analyses. The age model was based on the oxygen isotope record, biostratigraphic datums and AMS 14C dating. It was observed that the Pleistocene/Holocene transition occurs within Globorotalia menardii Biozone Y, and is not coeval with the base of Biozone Z. The range between summer and winter SST estimates is larger during the glacial period compared to interglacials. Three peaks of low SST around 70, 50 - 45 and 20 ka coincided with periods of enhanced SE trade winds. Despite faunal differences between the last interglacial (MIS 5e) and the Holocene, our SST estimates suggest that SSTs did not differ significantly between these intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1119 is located at water depth 395 m near the subtropical front (STF; here represented by the Southland Front), just downslope from the shelf edge of eastern South Island, New Zealand. The upper 86.19 metres composite depth (mcd) of Site 1119 sediment was deposited at an average sedimentation rate of 34 cm/kyr during Marine Isotope Stages (MIS) 1-8 (0-252 ka), and is underlain across a ~25 kyr intra-MIS 8 unconformity by MIS 8.5-11 (277-367 ka) and older sediment deposited at ~14 cm/kyr. A time scale is assigned to Site 1119 using radiocarbon dates for the period back to ~39 ka, and, prior to then, by matching its climatic record with that of the Vostok ice core, which it closely resembles. Four palaeoceanographic proxy measures for surface water masses vary together with the sandy-muddy, glacial-interglacial (G/I) cyclicity at the site. Interglacial intervals are characterised by heavy delta13C, high colour reflectance (a proxy for carbonate content), low Q-ray (a proxy for clay content) and light delta18O; conversely, glacial intervals exhibit light delta13C, low reflectance, high Q-ray and heavy delta18O signatures. Early interglacial intervals are represented by silty clays with 10-105-cm-thick beds of sharp-based (Chondrites-burrowed), shelly, graded, fine sand. The sands are rich in foraminifera, and were deposited distant from the shoreline under the influence of longitudinal flow in relatively deep water. Glacial intervals comprise mostly micaceous silty clay, though with some thin (2-10 cm thick) sands present also at peak cold periods, and contain the cold-water scallop Zygochlamys delicatula. Interglacial sandy intervals are characterised by relatively low sedimentation rates of 5-32 cm/kyr; cold climate intervals MIS 10, 6 and 2 have successively higher sedimentation rates of 45, 69 and 140 cm/kyr. Counter-intuitively,and forced by the bathymetric control of a laterally-moving shoreline during G/I and I/G transitions, the 1119 core records a southeasterly (seaward) movement of the STF during early glacial periods, accompanied by the incursion of subtropical water (STW) above the site, and northwesterly (landward) movement during late glacial and interglacial times, resulting in a dominant influence then of subantarctic surface water (SAW). The history of passage of these different water masses at the site is clearly delineated by their characteristic delta13C values. The intervals of thin, graded sands-muds which occur within MIS 2-3, 6, 7.4 and 10 indicate the onset at times of peak cold of intermittent bottom currents caused by strengthened and expanded frontal flows along the STF, which at such times lay near Site 1119 in close proximity to seaward-encroaching subantarctic waters within the Bounty gyre. In common with other nearby Southern Hemisphere records, the cold period which represents the last glacial maximum lasted between ~23-18 ka at Site 1119, during which time the STF and Subantarctic Front (SAF) probably merged into a single intense frontal zone around the head of the adjacent Bounty Trough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four seismic surveys and a stratigraphic record from southernmost Patagonia (Argentina) based on 51 AMS-14C dates obtained in the framework of ICDP expedition 5022 "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO) provide a database to compare the 106 m composite profile from the lake centre with piston cores from the littoral and outcrops in the catchment area. Based on event correlation using distinct volcanic ash layers with unique geochemical composition and optically stimulated luminescence (OSL) dates on feldspars, sediment records are firmly linked. This approach allows to match the sediment record with water levels during the past ca. 49 ka providing evidence for lake level variations. Reconstructed lake levels were 20 m higher than today during the last Glacial until the early Holocene. With the migration of the Southern Hemispheric Westerlies over this site the lake level dropped ca. 55 m for a period of two millennia. Thereupon the water balance was more positive again causing a stepwise rise of the lake level until the maximum was reached during the Little Ice Age with a subsequent lowering since the 20th century. We suggest that the mid- to late-Holocene lake level variation is caused by intensity changes of the Southern Hemispheric Westerlies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies from the subtropical western and eastern Atlantic Ocean, using the 231Pa/230Th ratio as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of meridional overturning circulation (MOC) over the last deglaciation. In this study, we present a compilation of existing and new sedimentary 231Pa/230Th records from North Atlantic cores between 1710 and 4550 m water depth. Comparing sedimentary 231Pa/230Th from different depths provides new insights into the evolution of the geometry and rate of deep water formation in the North Atlantic during the last 20,000 years. The 231Pa/230Th ratio measured in upper Holocene sediments indicates slow water renewal above ?2500 m and rapid flushing below, consistent with our understanding of modern circulation. In contrast, during the Last Glacial Maximum (LGM), Glacial North Atlantic Intermediate Water (GNAIW) drove a rapid overturning circulation to a depth of at least ?3000 m depth. Below ~4000 m, water renewal was much slower than today. At the onset of Heinrich event 1, transport by the overturning circulation declined at all depths. GNAIW shoaled above 3000 m and significantly weakened but did not totally shut down. During the Bølling-Allerød (BA) that followed, water renewal rates further decreased above 2000 m but increased below. Our results suggest for the first time that ocean circulation during that period was quite distinct from the modern circulation mode, with a comparatively higher renewal rate above 3000 m and a lower renewal rate below in a pattern similar to the LGM but less accentuated. MOC during the Younger Dryas appears very similar to BA down to 2000 m and slightly slower below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para dar suporte ao atual debate sobre as consequências climáticas da liberação antropogênica de CO2 na atmosfera, o refinamento do conhecimento sobre mudanças climáticas e oceanográficas no passado é necessário. A Circulação de Revolvimento Meridional do Atlântico (CRMA) tem papel fundamental na oceanografia e clima das áreas sob influência do Oceano Atlântico, controlando diretamente a estratificação e distribuição de massas d\'água, a quantidade de calor transportada pelo oceano e os ciclo e armazenamento de compostos químicos, como o CO2 em mar profundo. A formação e circulação da Água Intermediária Antártica (AIA), envolvida no transporte de calor e sal para o giro subtropical do Hemisfério Sul e nas teleconexões climáticas entre altas e baixas latitudes, é componente importante do ramo superior da CRMA. A reconstrução de propriedades de massas de água intermediárias é, portanto, importante para a compreensão dos sistemas de retroalimentação entre oceano-clima. No entanto, informações quanto a evolução da AIA continuam limitadas. Oscilações da CRMA e consequentes mudanças na distribuição de calor tem implicações importantes para o clima Sul Americano, influenciando a disponibilidade de umidade para o Sistema de Monções Sul Americano (SMSA), via temperatura da superfície marinha e posicionamento da Zona de Convergência Intertropical. Neste trabalho nós reconstruímos a assinatura isotópica da AIA durante os estágios isotópicos marinhos 2 e 3 (41-12 cal ka AP) usando isótopos de carbono e oxigênio de foraminíferos bentônicos (gêneros Cibicidoides e Uvigerina) de um testemunho de sedimentos marinhos datados por radiocarbono (1100 m de profundidade e a 20°S na costa do Brasil). Concluímos que propriedades físicas e químicas da AIA mudaram durante os estadiais Heinrich 3 e 4, provavelmente como consequência de enfraquecimento da CRMA durante estes períodos. Também reconstruímos as condições continentais do leste brasileiro entre o último máximo glacial e a deglaciação (23-12 cal ka AP) baseadas em razões Ti/Ca de nosso testemunho de sedimentos marinhos como indicadoras de aporte terrígeno do Rio Doce. A maior parte da chuva que cai na Bacia do Rio Doce está relacionada a atividade do SMAS. Nosso registro de Ti/Ca em conjunto com \'\'delta\' POT.18\'O de espeleotemas da Caverna Lapa Sem Fim, também no leste do Brasil, sugere diminuição marcante da chuva durante o interestadial Bølling-Allerød, provavelmente relacionada a enfraquecimento do SMAS. Ademais comparamos as razões de Ti/Ca com dados de saída da rodada SYNTRACE do modelo climático CCSM3 com forçantes transientes para a última deglaciação. Os registros geoquímicos e a saída do modelo mostram resultados consistentes entre si e sugerem que o leste da América do Sul passou pelo seu período mais seco de toda a última deglaciação durante o interestadial Bølling-Allerød, provavelmente relacionado ao enfraquecimento do SMAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last glacial-interglacial transition or Termination I (T I) is well documented in the Black Sea, whereas little is known about climate and environmental dynamics during the penultimate Termination (T II). Here we present a multi-proxy study based on a sediment core from the SE Black Sea covering the penultimate glacial and almost the entire Eemian interglacial (133.5 ±0.7-122.5 ±1.7 ka BP). Proxies comprise ice-rafted debris (IRD), O and Sr isotopes as well as Sr/Ca, Mg/Ca, and U/Ca ratios of benthic ostracods, organic and inorganic sediment geochemistry, as well as TEX86 and UK'37derived water temperatures. The ending penultimate glacial (MIS 6, 133.5 to 129.9 ±0.7 ka BP) is characterised by mean annual lake surface temperatures of about 9°C as estimated from the TEX86 palaeothermometer. This period is impacted by two Black Sea melt water pulses (BSWP-II-1 and 2) as indicated by very low Sr/Ca ostracods but high sedimentary K/Al values. Anomalously high radiogenic 87Sr/86Sr ostracod values (max. 0.70945) during BSWP-II-2 suggest a potential Himalayan source communicated via the Caspian Sea. The T II warming started at 129.9 ±0.7 ka BP, witnessed by abrupt disappearance of IRD, increasing d18O ostracod values, and a first TEX86 derived temperature rise of about 2.5°C. A second, abrupt warming step to ca. 15.5°C as the prelude of the Eemian warm period is documented at 128.3 ka BP. The Mediterranean-Black Sea reconnection most likely occurred at 128.1 ±0.7 ka BP as demonstrated by increasing Sr/Ca ostracods and U/Ca ostracods values. The disappearance of ostracods and TOC contents >2% document the onset of Eemian sapropel formation at 127.6 ka BP. During sapropel formation, TEX86 temperatures dropped and stabilised at around 9°C, while UK'37 temperatures remain on average 17°C. This difference is possibly caused by a habitat shift of Thaumarchaeota communities from surface towards nutrient-rich deeper and colder waters located above the gradually establishing halo-and redoxcline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present evidence that the characteristic chemical signature (based on coupled benthic foraminiferal Cd/Ca and d13C) of Antarctic Intermediate waters (AAIW) penetrated throughout the intermediate depths of the Atlantic basin to the high-latitude North Atlantic during the abrupt cooling events of the last deglaciation: Heinrich 1 and the Younger Dryas. AAIW may play the dynamic counterpart to the "bipolar seesaw" when near-freezing salty bottom waters from the Antarctic (AABW) sluggishly ventilate the deep ocean. Our data reinforce the concept that interglacial circulation is stabilized by salinity feedbacks between salty northern sourced deep waters (NADW) and fresh southern sourced waters (AABW and AAIW). Further, the glacial ocean may be susceptible to the more finely balanced relative densities of NADW and AAIW, due to either freshwater input or a reversal of the salinity gradient, such that the ocean is poised for NADW collapse via a negative salinity feedback. The unstable climate of the glacial period and its termination may arise from the closer competition for ubiquity at intermediate depths between northern and southern sourced intermediate waters.