987 resultados para LASER PULSE REPETITION RATE
Resumo:
OBJECTIVE: To analyze the results of laser-assisted extraction of permanent pacemaker and defibrillator leads. METHODS: We operated upon 36 patients, whose mean age was 54.2 years, and extracted 56 leads. The reasons for extracting the leads were as follows: infection in 19 patients, elective replacement in 13, and other causes in 4 patients. The mean time of catheter placement was 7.5±5.5 years. Forty-seven leads were from pacemakers, and 9 were from defibrillators. Thirty-eight leads were in use, 14 had been abandoned in the pacemaker pocket, and 4 had been abandoned inside the venous system. RESULTS: We successfully extracted 54 catheters, obtaining a 96.4% rate of success and an 82.1% rate for complete extraction. The 2 unsuccessful cases were due to the presence of calcium in the trajectory of the lead. The mean duration of laser light application was 123.0±104.5 s, using 5,215.2±4,924.0 pulses, in a total of 24.4±24.2 cycles of application. Thirty-four leads were extracted from the myocardium with countertraction after complete progression of the laser sheath, 12 leads came loose during the progression of the laser sheath, and the remaining 10 were extracted with other maneuvers. One patient experienced cardiac tamponade after extraction of the defibrillator lead, requiring open emergency surgery. CONCLUSION: The use of the excimer laser allowed extraction of the leads with a 96% rate of success; it was not effective in 2 patients who had calcification on the lead. One patient (2.8%) had a complication that required cardiac surgery on an emergency basis.
Resumo:
Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.
Resumo:
The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.
Resumo:
OBJECTIVE: Research regarding communication between pediatricians and parents in pediatric consultation has mainly focused on parental satisfaction, on its influence on compliance and on communication techniques used by pediatricians. However, there is paucity in research regarding parental stress levels during pediatric consultation. Therefore, the aim of our study was to measure parental heart rate variability related as a measure of stress levels during pediatric consultation. METHODS: Video recordings with simultaneous monitoring and recording of parental heart rate were obtained from 38 pediatric consultations in the ambulatory or hospital setting of the department of pediatrics (HFR, Fribourg, Switzerland). Pulse variation was measured every 5 seconds and heart rate variability (increase or decrease were analyzed) in relation to various sections of the consultation. RESULTS: Heart rate significantly decreased at the end of the consultation compared to the beginning of the consultation (p= 0.0567). In addition, heart rate significantly decreased at the beginning of clinical examination (p= 0.0476) compared to psychosocial history taking. During the discussion of laboratory findings and diagnosis, heart rate was significantly elevated compared to the discussion of the prognosis (p=0.0505). CONCLUSION: We conclude that pediatric consultation has a significant impact on parental stress levels shown by parental heart variability. In general, it can be shown that stress levels significantly decrease at the end of the consultation compared to the beginning of the consultation. In addition, stress levels decrease at the beginning of clinical examination and increase during psychosocial history taking and discussion of laboratory findings and diagnosis. Therefore, our findings highlight the importance of a thorough consultation which include a comprehensive clinical examination with special care taken regarding psychosocial issues and information given regarding the diagnosis.
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
BACKGROUND: : The systolic augmentation index (sAix), calculated from the central aortic pulse wave (reconstructed from the noninvasive recording of the radial pulse with applanation tonometry), is widely used as a simple index of central arterial stiffness, but has the disadvantage of also being influenced by the timing of the reflected with respect to the forward pressure wave, as shown by its inverse dependence on heart rate (HR). During diastole, the central aortic pulse also contains reflected waves, but their relationship to arterial stiffness and HR has not been studied. METHODS: : In 48 men and 45 women, all healthy, with ages ranging from 19 to 70 years, we measured pulse wave velocity (PWV, patients supine), a standard evaluator of arterial stiffness, and carried out radial applanation tonometry (patients sitting and supine). The impact of reflected waves on the diastolic part of the aortic pressure waveform was quantified in the form of a diastolic augmentation index (dAix). RESULTS: : Across ages, sexes, and body position, there was an inverse relationship between the sAix and the dAix. When PWV and HR were added as covariates to a prediction model including age, sex and body position as main factors, the sAix was directly related to PWV (P < 0.0001) and inversely to HR (P < 0.0001). With the same analysis, the dAix was inversely related to PWV (P < 0.0001) and independent of HR (P = 0.52). CONCLUSION: : The dAix has the same degree of linkage to arterial stiffness as the more conventional sAix, while being immune to the confounding effect of HR. The quantification of diastolic aortic pressure augmentation by reflected waves could be a useful adjunct to pulse wave analysis.
Resumo:
While the lesions produced by transmyocardial laser revascularisation (TMLR) induce scar formation, it is important to determine whether this procedure can be deleterious for the left-ventricular function, which is already impaired by the underlying ischaemic process in some patients. Ten channels were drilled in the left lateral wall of the hearts of ten pigs (mean weight, 61 +/- 8.2kg) with a Holmium:YAG laser. Haemodynamic measurements and echocardiographic assessment of left-ventricular function were performed before the TMLR procedure, 5 and 30 min after, and lastly after 5 min of pacing at a rate increased by 30% of the baseline value. Echocardiographic assessment was in the short axis at the level of the laser channels, and included left-ventricular ejection fraction and segmental wall motility of the lasered area (scale 0-3:0 = normal 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). Values at 5 and 30 min were compared with baseline values; the difference was considered significant if p < 0.05. Haemodynamical values were stable throughout all the procedures. The ejection fraction showed a slight but significant decrease 5 min after the creation of the channels (60.4 +/- 6.8% vs 54 +/- 7.6%, p=0.02) and recovered at 30min. The segmental motility score of the involved areas increased to 1 after 5 min in five animals, and came back to 0 at 30 min except in one animal. Even with pacing no segmental dysfunction occurred. The reversibility of the segmental hypokinesia induced by TMLR, as well as the absence of pace-induced dysfunction 30 min after the procedure strongly suggest the inocuity of TMLR in this experimental set-up.
Resumo:
A statistical methodology for the objective comparison of LDI-MS mass spectra of blue gel pen inks was evaluated. Thirty-three blue gel pen inks previously studied by RAMAN were analyzed directly on the paper using both positive and negative mode. The obtained mass spectra were first compared using relative areas of selected peaks using the Pearson correlation coefficient and the Euclidean distance. Intra-variability among results from one ink and inter-variability between results from different inks were compared in order to choose a differentiation threshold minimizing the rate of false negative (i.e. avoiding false differentiation of the inks). This yielded a discriminating power of up to 77% for analysis made in the negative mode. The whole mass spectra were then compared using the same methodology, allowing for a better DP in the negative mode of 92% using the Pearson correlation on standardized data. The positive mode results generally yielded a lower differential power (DP) than the negative mode due to a higher intra-variability compared to the inter-variability in the mass spectra of the ink samples.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.
Resumo:
Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
Synthetic atrial natriuretic peptide, containing 26 amino acids in the rat sequence, L-364, 343 (Ileu-ANP), was infused intravenously at increasing rates (1-40 micrograms/min) into four normal volunteers. Mean intraarterial blood pressure decreased and heart rate increased in cumulative-dose-dependent fashion. Skin blood flow as measured with a laser Doppler device rose already with a cumulative dose of 55 micrograms Ileu-ANP and further rises were directly related to dose. The only side effects observed were those accompanying symptomatic hypotension at higher doses. These findings provide strong evidence that Ileu-ANP acts as a vasodilator in normal volunteers.
Resumo:
PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.