956 resultados para Irregular satellites
Resumo:
In this paper we describe the dynamic simulation of an 18 degrees of freedom hexapod robot with the objective of developing control algorithms for smooth, efficient and robust walking in irregular terrain. This is to be achieved by using force sensors in addition to the conventional joint angle sensors as proprioceptors. The reaction forces on the feet of the robot provide the necessary information on the robots interaction with the terrain. As a first step we validate the simulator by implementing movement control by joint torques using PID controllers. As an unexpected by-product we find that it is simple to achieve robust walking behaviour on even terrain for a hexapod with the help of PID controllers and by specifying a trajectory of only a few joint configurations.
Resumo:
Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice based model is that a proliferative population will always eventually fill the lattice. Here we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental setups. Lattice-free simulation results are compared to these mean-field descriptions and to a corresponding lattice-based model. Data from a proliferation experiment is used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.
Resumo:
In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.
Resumo:
The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n (1) and [Cs(C6H6NO3S)]n (2) and have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving a number of bidentate chelate sulfonate-O,O’-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.
Resumo:
This chapter attends to the legal and political geographies of one of Earth's most important, valuable, and pressured spaces: the geostationary orbit. Since the first, NASA, satellite entered it in 1964, this small, defined band of Outer Space, 35,786km from the Earth's surface, and only 30km wide, has become a highly charged legal and geopolitical environment, yet it remains a space which is curiously unheard of outside of specialist circles. For the thousands of satellites which now underpin the Earth's communication, media, and data industries and flows, the geostationary orbit is the prime position in Space. The geostationary orbit only has the physical capacity to hold approximately 1500 satellites; in 1997 there were approximately 1000. It is no overstatement to assert that media, communication, and data industries would not be what they are today if it was not for the geostationary orbit. This chapter provides a critical legal geography of the geostationary orbit, charting the topography of the debates and struggles to define and manage this highly-important space. Drawing on key legal documents such as the Outer Space Treaty and the Moon Treaty, the chapter addresses fundamental questions about the legal geography of the orbit, questions which are of growing importance as the orbit’s available satellite spaces diminish and the orbit comes under increasing pressure. Who owns the geostationary orbit? Who, and whose rules, govern what may or may not (literally) take place within it? Who decides which satellites can occupy the orbit? Is the geostationary orbit the sovereign property of the equatorial states it supertends, as these states argued in the 1970s? Or is it a part of the res communis, or common property of humanity, which currently legally characterises Outer Space? As challenges to the existing legal spatiality of the orbit from launch states, companies, and potential launch states, it is particularly critical that the current spatiality of the orbit is understood and considered. One of the busiest areas of Outer Space’s spatiality is international territorial law. Mentions of Space law tend to evoke incredulity and ‘little green men’ jokes, but as Space becomes busier and busier, international Space law is growing in complexity and importance. The chapter draws on two key fields of research: cultural geography, and critical legal geography. The chapter is framed by the cultural geographical concept of ‘spatiality’, a term which signals the multiple and dynamic nature of geographical space. As spatial theorists such as Henri Lefebvre assert, a space is never simply physical; rather, any space is always a jostling composite of material, imagined, and practiced geographies (Lefebvre 1991). The ways in which a culture perceives, represents, and legislates that space are as constitutive of its identity--its spatiality--as the physical topography of the ground itself. The second field in which this chapter is situated—critical legal geography—derives from cultural geography’s focus on the cultural construction of spatiality. In his Law, Space and the Geographies of Power (1994), Nicholas Blomley asserts that analyses of territorial law largely neglect the spatial dimension of their investigations; rather than seeing the law as a force that produces specific kinds of spaces, they tend to position space as a neutral, universally-legible entity which is neatly governed by the equally neutral 'external variable' of territorial law (28). 'In the hegemonic conception of the law,' Pue similarly argues, 'the entire world is transmuted into one vast isotropic surface' (1990: 568) on which law simply acts. But as the emerging field of critical legal geography demonstrates, law is not a neutral organiser of space, but is instead a powerful cultural technology of spatial production. Or as Delaney states, legal debates are “episodes in the social production of space” (2001, p. 494). International territorial law, in other words, makes space, and does not simply govern it. Drawing on these tenets of the field of critical legal geography, as well as on Lefebvrian concept of multipartite spatiality, this chapter does two things. First, it extends the field of critical legal geography into Space, a domain with which the field has yet to substantially engage. Second, it demonstrates that the legal spatiality of the geostationary orbit is both complex and contested, and argues that it is crucial that we understand this dynamic legal space on which the Earth’s communications systems rely.
Resumo:
Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.
Resumo:
In the structure of the title complex [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. Intra-unit O-H...O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.
Resumo:
Objective: To investigate the mental and general health of infertile women who had not sought medical advice for their recognized infertility and were therefore not represented in clinical populations. Design: Longitudinal cohort study.Setting Population based.Patient(s) Participants in the Australian Longitudinal Study on Women's Health aged 28-33 years in 2006 who had ever tried to conceive or had been pregnant (n = 5,936).Intervention(s) None.Main Outcome Measure(s) Infertility, not seeking medical advice. Result(s): Compared with fertile women (n = 4,905), infertile women (n = 1,031) had higher odds of self-reported depression (odds ratio [OR] 1.20, 95% confidence interval [CI] 1.01-1.43), endometriosis (5.43, 4.01-7.36), polycystic ovary syndrome (9.52, 7.30-12.41), irregular periods (1.99, 1.68-2.36), type II diabetes (4.70, 1.79-12.37), or gestational diabetes (1.66, 1.12-2.46). Compared with infertile women who sought medical advice (n = 728), those who had not sought medical advice (n = 303) had higher odds of self-reported depression (1.67, 1.18-2.37), other mental health problems (3.14, 1.14-8.64), urinary tract infections (1.67, 1.12-2.49), heavy periods (1.63, 1.16-2.29), or a cancer diagnosis (11.33, 2.57-49.89). Infertile women who had or had not sought medical advice had similar odds of reporting an anxiety disorder or anxiety-related symptoms. Conclusion(s): Women with self-reported depression were unlikely to have sought medical advice for infertility. Depression and depressive symptoms may be barriers to seeking medical advice for infertility.
Resumo:
The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Bodyweight and other correlates of symptom detected breast cancers in a population offered screening
Resumo:
Objective: To determine factors associated with symptom detected breast cancers in a population offered screening. Methods We interviewed 1,459 Australian women aged 40–69, 946 with symptom detected and 513 with mammogram detected invasive breast cancers ≥1.1 cm in diameter, about their personal, mammogram and breast histories before diagnosis and reviewed medical records for tumour characteristics and mammogram dates, calculating ORs and 95% confidence intervals (CIs) for symptom- vs mammogram-detected cancers in logistic regression models. Results: Lack of regular mammograms (<2 mammograms in the 4.5 years before diagnosis) was the strongest correlate of symptom detected breast cancer (OR=3.04 for irregular or no mammograms). In women who had regular mammograms (≥2 mammograms in the 4.5 years before diagnosis), the independent correlates of symptom detected cancers were low BMI (OR <25kg/m2 vs ≥30kg/m2=2.18, 95% CI 1.23-3.84; p=0.008), increased breast density (available in 498 women) (OR highest quarter vs lowest =3.50, 95% CI 1.76-6.97; ptrend=0.004), high grade cancer and a larger cancer (each p<0.01). In women who did not have regular mammograms, the independent correlates were age <50 years, a first cancer and a ≥2cm cancer. Smoking appeared to modify the association of symptom detected cancer with low BMI (higher ORs for low BMI in current smokers) and estrogen receptor (ER) status (higher ORs for low BMI in ER− cancers). Conclusion: Women with low BMI may benefit from a tailored approach to breast cancer detection, particularly if they smoke.