433 resultados para Intermetallic precipitates
Resumo:
Objective: To assess whether cannabis use in adolescence and young adulthood is a contributory cause of schizophreniform psychosis in that it may precipitate psychosis in vulnerable individuals. Method: We reviewed longitudinal studies of adolescents and young adults that examined the relations between self-reported cannabis use and the risk of diagnosis with a psychosis or of reporting psychotic symptoms. We also reviewed studies that controlled for potential confounders, such as other forms of drug use and personal characteristics that predict an increased risk of psychosis. We assessed evidence for the biological plausibility of a contributory causal relation. Results: Evidence from 6 longitudinal studies in 5 countries shows that regular cannabis use predicts an increased risk of a schizophrenia diagnosis or of reporting symptoms of psychosis. These relations persisted after controlling for confounding variables, such as personal characteristics and other drug use. The relation did not seem to be a result of cannabis use to self-medicate symptoms of psychosis. A contributory causal relation is biologically plausible because psychotic disorders involve disturbances in the dopamine neurotransmitter systems with which the cannabinoid system interacts, as demonstrated by animal studies and one human provocation study. Conclusion: It is most plausible that cannabis use precipitates schizophrenia in individuals who are vulnerable because of a personal or family history of schizophrenia.
Resumo:
Sand-cast plates were used to determine the effect of iron and manganese concentrations on porosity levels in Al-9 pet Si-0.5 pet Mg alloys. Iron increased porosity levels. Manganese additions increased porosity levels in alloys with 0.1 pet Fe, but reduced porosity in alloys with 0.6 and I pet Fe. Thermal analysis and quenching were undertaken to determine the effect of iron and manganese on the solidification of the Al-Si eutectic. At high iron levels, the presence of large beta-Al5FeSi was found to reduce the number of eutectic nucleation events and increase the eutectic grain size. The preferential formation of alpha-Al15Mn3Si2 upon addition of manganese reversed these effects. It is proposed that this interaction is due to beta-Al5FeSi and the Al-Si eutectic having common nuclei. Porosity levels are proposed to be controlled by the eutectic grain size and the size of the iron-bearing intermetallic particles rather than the specific intermetallic phase that forms.
Resumo:
The basis of the present authors' edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the edges of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed edge-to-edge matching appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal Structures and in those where the precipitate has a more complex structure.
Resumo:
Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.
Resumo:
The current success of soy foods is driving soy ingredient manufacturers to develop innovative products for food manufacturers. One such innovation is separating the soy proteins glycinin and beta-conglycinin to take advantage of their individual functional and nutritional properties. Precipitation by acidification is a low-cost method for separating these two proteins. Separation is achieved by preferentially precipitating glycinin at pH ~ 6 while beta-conglycinin remains in solution. Understanding the particle formation during protein precipitation is important as it can influence the efficiency of the precipitation process as well as subsequent downstream processes such as the particle-liquid separation step, usually achieved by centrifugation. Most of the previous soy protein precipitation studies are limited to precipitation at pH 4 as this is the pH range most commonly used in the commercial manufacturing of soy protein isolates. To date, there have been no studies on the particle formation during precipitation at pH > 5.Precipitation of soy protein is generally thought to occur by the rapid formation of primary particles in the size range of 0.1 - 0.3 microns followed by aggregation of these particles via collision to aggregates of size about 1 - 50 microns. The formation of the primary particles occurs on a time scale much shorter than that of the overall precipitation process (Nelson and Glatz, 1985). This study shows that precipitation of soy protein is indeed rapid. At high pH levels, binary liquid-liquid separation occurs forming a protein-rich heavy phase. The protein-rich phase appears as droplets which can be coalesced to form a uniform bulk layer under centrifugation forces. Upon lowering the pH level by the addition of acid, further protein is precipitated as amorphous material which binds the droplets together to form aggregates of amorphous precipitates. Liquid-liquid separation has been observed in many protein solutions but this phenomenon has only scarcely been reported in the literature for soy proteins. It presents an exciting opportunity for an innovative product. Features of the liquid-phase protein such as protein yield and purity will be characterized.
Resumo:
Research indicates Virtual Reality (VR) is delivering on it's promised potential to provide enhanced training and education outcomes. A significant research project, at the University of Queensland, has constructed a number of virtual contexts in which the phenomena experienced by patients who have psychosis are reproduced for use in psychiatry education. Symptoms of psychosis reproduced include delusions, hallucinations and thought disorder. The new software enables psychiatry students to experience the inner world of a patient with psychosis. Lecturers in psychiatry report VR has the potential to enhance student's abilities to actually 'feel' the types of emotions and physiological reactions a hallucination precipitates in a patient. The current work of the project and stages of software development will be demonstrated. The virtual environments provide a new method of delivering experiential learning opportunities to higher education classrooms.
Resumo:
The introduction of single crystal casting techniques has led to the development of existing nickel-base superalloys to produce materials with optimum mechanical properties in the single crystal condition. As single crystals are known to be anisotropic, a study is needed to determine the general mechanical properties of these materials, and determine the effects of crystal orientation upon them. A study has been carried out to identify the effect of orientation and temperature on the creep and fatigue properties of a development single crystal superalloy, SRR 99. Creep testing and crystal rotation experiments have been made on SRR 99 and an earlier development alloy, SRR 9. Fatigue experiments at elevated temperatures have been carried out on both notched and un-notched specimens of alloy SRR 99. To aid in this analysis, several analytical techniques have been employed including Laue x-ray orientation analysis, measurement of strain by photographic methods and microstructural examination. Crystal rotation experiments have indicated that shear of 1 precipitates by lbrace111rbrace< 112> slip systems is operative during primary creep deformation at temperatures of 750oC and 850oC. The effect of orientation variation obtained by standard casting practices was not found to be significant. Creep rupture was found to be associated with multiple crack initiation from micropores. Fatigue crack initiation in un-notched specimens was found to be related to microporosity and microstructural defects. Failure was predominantly by crystallographic crack growth on lbrace111rbrace planes. The use of linear elastic fracture mechanics to describe fatigue crack propagation in alloy SRR 99 was found to be acceptable at temperatures up to 850oC. Variation of temperature, frequency and crystal orientation was found to have only moderate effect upon crack propagation rates.
Resumo:
The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.
Resumo:
The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.
Resumo:
Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.
Resumo:
Interest into the effects of social influence on members of online communities is growing but there is a lack of knowledge about the impact of influential members in online communities on responses to strategy change within the wider community. We explore social influence in responses to strategy change through content analysis of forum posts before and after a change in strategy. Acceptance or non-acceptance of strategy change and subsequent positive and negative behavioural responses online are dependent on individual factors. The details of these behavioural responses to a change in strategy are tabulated and included in a conceptual model to inform decision-makers. Strategy change precipitates a reduction in social influence effects. Non-acceptance of strategy change is associated with competitor advertisement, inflammatory behaviour, offensive behaviour and complaints. This negative behaviour has important ramifications for acceptance of strategy change within the wider community and impacts on the viability of setting up online forums. © 2014 © 2014 Taylor & Francis.
Resumo:
An investigation, employing edge-on transmission electron microscopy, of the microstructure of aluminide diffusion coatings on a single crystal y' strengthened nickel base super alloy is reported. An examination has been made of the effect of postcoating exposure at 1100°C on the stability of the coating matrix, a B2 type phase, nominally NiAl. Precipitation in the coating is considered with respect to both decomposition of the B2 matrix to other Ni-Al (plus titanium) phases and the formation of chromium bearing precipitates. A comparison is drawn with behaviour at lower temperatures (850-950°C). © 1995 The Institute of Materials.
Resumo:
Static mechanical properties of 2124 Al/SiCp MMC have been measured as a function of solution temperature and time. An optimum solution treatment has been established which produces significant improvements in static mechanical properties and fatigue crack growth resistance over conventional solution treatments. Increasing the solution treatment parameters up to the optimum values improves the mechanical properties because of intermetallic dissolution, improved solute and GPB zone strengthening and increased matrix dislocation density. Increasing the solution treatment parameters beyond the optimum values results in a rapid reduction in mechanical properties due to the formation of gas porosity and surface blisters. The optimum solution treatment improves tensile properties in the transverse orientation to a greater extent than in the longitudinal orientation and this results in reduced anisotropy. © 1996 Elsevier Science Limited.
Resumo:
The precipitation of chromium-containing phases, in both the B2 type β-phase coating matrix (nominally NiAl) and the substrate of high-activity-pack-aluminized single crystals of a nickel-base superalloy, is considered in this paper. An ‘edge-on’ transmission electron microscopy (TEM) technique is employed to examine the precipitation of M23X6, σ, α-Cr and other phases after coating and diffusion treatment and subsequent post-coating treatment at 850 and 950 °C. Initial precipitation is dominated by the formation of M23X6 in both the coating and substrate, however, in the case of single-crystal substrates the formation of this carbon-rich phase is not sustained. M23X6 precipitation is superceded by the formation of coherent precipitates of the α-Cr phase which effectively retains the basis but removes the superlattice of the β-matrix. Extensive precipitation of α-Cr has the effect of changing the balance of chromium to molybdenum in solution in the β-phase and further precipitation is dominated by Σ-phase intermetallics and other Cr-Mo-containing phases.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.