865 resultados para Intégration positive
Resumo:
Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
Résumé de l'étude. L'application d'une pression positive (PEEP) pendant la phase d'induction d'une anesthésie générale peut prévenir la formation d'atélectasies pulmonaires. Ceci pourrait permettre d'accroître la durée d'apnée non hypoxique par l'augmentation de la capacité pulmonaire résiduelle fonctionnelle (CRF). Nous avons étudié le bénéfice de l'application d'une PEEP durant la phase d'induction d'une anesthésie générale sur la durée d'apnée avant que la saturation périphérique en oxygène atteigne 90%. Quarante patients ASA I-II ont été randomisés en deux groupes distincts. - Dans le groupe PEEP (n=20), les patients ont été pré-oxygénés durant 5 minutes avec une Fi02 à l00% par l'intermédiaire d'un appareil de CPAP (6cmH2O). Après induction de l'anesthésie, les patients furent ventilés mécaniquement (PEEP 6cmH2O) durant 5 minutes supplémentaires. - Dans le groupe ZEEP (n=20), aucune pression positive (ni CPAP, ni PEEP) ne fut utilisée. La durée d'apnée pour atteindre une saturation périphérique de 90% fut mesurée. La durée d'apnée non hypoxique était plus longue dans le groupe PEEP par rapport au groupe ZEEP (599 +/- 135 s vs 470 +/- 150 s, p= 0,007). Nous concluons que l'application d'une pression positive durant la phase d'induction d'une anesthésie générale chez l'adulte prolonge la durée d'apnée non hypoxique de plus de 2 minutes.
Resumo:
Ninety-six clinical isolates of Staphylococcus aureus from Nigeria were characterized phenotypically and genetically. Twelve multidrug-resistant methicillin (meticillin)-resistant S. aureus (MRSA) isolates carrying a new staphylococcal cassette chromosome mec element and a high proportion of Panton-Valentine leukocidin (PVL)-positive methicillin-susceptible S. aureus (MSSA) isolates were observed. The cooccurrence of multidrug-resistant MRSA and PVL-positive MSSA isolates entails the risk of emergence of a multidrug-resistant PVL-positive MRSA clone.
Resumo:
Pseudomonas aeruginosa has a pair of distinct ornithine carbamoyltransferases. The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate. The catabolic ornithine carbamoyltransferase encoded by the arcB gene promotes the reverse reaction in vivo; although this enzyme can be assayed in vitro for citrulline synthesis, its unidirectionality in vivo is determined by its high concentration at half maximum velocity for carbamoylphosphate ([S]0.5) and high cooperativity toward this substrate. We have isolated mutant forms of catabolic ornithine carbamoyltransferase catalyzing the anabolic reaction in vivo. The corresponding arcB mutant alleles on a multicopy plasmid specifically suppressed an argF mutation of P. aeruginosa. Two new mutant enzymes were obtained. When methionine 321 was replaced by isoleucine, the mutant enzyme showed loss of homotropic cooperativity at physiological carbamoylphosphate concentrations. Substitution of glutamate 105 by lysine resulted in a partial loss of the sigmoidal response to increasing carbamoylphosphate concentrations. However, both mutant enzymes were still sensitive to the allosteric activator AMP and to the inhibitor spermidine. These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphosphate cooperativity: glutamate 105 (previously known to be important) and methionine 321. Mutational changes in either amino acid will affect the geometry of helix H2, which contains several residues required for carbamoylphosphate binding.
Resumo:
MOTIVATION: The detection of positive selection is widely used to study gene and genome evolution, but its application remains limited by the high computational cost of existing implementations. We present a series of computational optimizations for more efficient estimation of the likelihood function on large-scale phylogenetic problems. We illustrate our approach using the branch-site model of codon evolution. RESULTS: We introduce novel optimization techniques that substantially outperform both CodeML from the PAML package and our previously optimized sequential version SlimCodeML. These techniques can also be applied to other likelihood-based phylogeny software. Our implementation scales well for large numbers of codons and/or species. It can therefore analyse substantially larger datasets than CodeML. We evaluated FastCodeML on different platforms and measured average sequential speedups of FastCodeML (single-threaded) versus CodeML of up to 5.8, average speedups of FastCodeML (multi-threaded) versus CodeML on a single node (shared memory) of up to 36.9 for 12 CPU cores, and average speedups of the distributed FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU cores in total).Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/. CONTACT: selectome@unil.ch or nicolas.salamin@unil.ch.
Resumo:
Different signatures of natural selection persist over varying time scales in our genome, revealing possible episodes of adaptative evolution during human history. Here, we identify genes showing signatures of ancestral positive selection in the human lineage and investigate whether some of those genes have been evolving adaptatively in extant human populations. Specifically, we compared more than 11,000 human genes with their orthologs inchimpanzee, mouse, rat and dog and applied a branch-site likelihood method to test for positive selection on the human lineage. Among the significant cases, a robust set of 11 genes were then further explored for signatures of recent positive selection using SNP data. We genotyped 223 SNPs in 39 worldwide populations from the HGDP Diversity panel and supplemented this information with available genotypes for up to 4,814 SNPs distributed along 2 Mb centered on each gene. After exploring the allele frequency spectrum, population differentiation and the maintainance of long unbroken haplotypes, we found signals of recent adaptative phenomena in only one of the 11 candidate gene regions. However, the signal ofrecent selection in this region may come from a different, neighbouring gene (CD5) ratherthan from the candidate gene itself (VPS37C). For this set of positively-selected genes in thehuman lineage, we find no indication that these genes maintained their rapid evolutionarypace among human populations. Based on these data, it therefore appears that adaptation forhuman-specific and for population-specific traits may have involved different genes.
Resumo:
Asparagine N-Glycosylation is one of the most important forms of protein post-translational modification in eukaryotes. This metabolic pathway can be subdivided into two parts: an upstream sub-pathway required for achieving proper folding for most of the proteins synthesized in the secretory pathway, and a downstream sub-pathway required to give variability to trans-membrane proteins, and involved in adaptation to the environment and innate immunity. Here we analyze the nucleotide variability of the genes of this pathway in human populations, identifying which genes show greater population differentiation and which genes show signatures of recent positive selection. We also compare how these signals are distributed between the upstream and the downstream parts of the pathway, with the aim of exploring how forces of population differentiation and positive selection vary among genes involved in the same metabolic pathway but subject to different functional constraints. Our results show that genes in the downstream part of the pathway are more likely to show a signature of population differentiation, while events of positive selection are equally distributed among the two parts of the pathway. Moreover, events of positive selection are frequent on genes that are known to be at bifurcation points, and that are identified as being in key position by a network-level analysis such as MGAT3 and GCS1. These findings indicate that the upstream part of the Asparagine N-Glycosylation pathway has lower diversity among populations, while the downstream part is freer to tolerate diversity among populations. Moreover, the distribution of signatures of population differentiation and positive selection can change between parts of a pathway, especially between parts that are exposed to different functional constraints. Our results support the hypothesis that genes involved in constitutive processes can be expected to show lower population differentiation, while genes involved in traits related to the environment should show higher variability. Taken together, this work broadens our knowledge on how events of population differentiation and of positive selection are distributed among different parts of a metabolic pathway.
Resumo:
Humans live in symbiosis with 10(14) commensal bacteria among which >99% resides in their gastrointestinal tract. The molecular bases pertaining to the interaction between mucosal secretory IgA (SIgA) and bacteria residing in the intestine are not known. Previous studies have demonstrated that commensals are naturally coated by SIgA in the gut lumen. Thus, understanding how natural SIgA interacts with commensal bacteria can provide new clues on its multiple functions at mucosal surfaces. Using fluorescently labeled, nonspecific SIgA or secretory component (SC), we visualized by confocal microscopy the interaction with various commensal bacteria, including Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides strains. These experiments revealed that the interaction between SIgA and commensal bacteria involves Fab- and Fc-independent structural motifs, featuring SC as a crucial partner. Removal of glycans present on free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive bacteria, indicating the essential role of carbohydrates in the process. In contrast, poor binding of Gram-positive bacteria by control IgG was observed. The interaction with Gram-negative bacteria was preserved whatever the molecular form of protein partner used, suggesting the involvement of different binding motifs. Purified SIgA and SC from either mouse hybridoma cells or human colostrum exhibited identical patterns of recognition for Gram-positive bacteria, emphasizing conserved plasticity between species. Thus, sugar-mediated binding of commensals by SIgA highlights the currently underappreciated role of glycans in mediating the interaction between a highly diverse microbiota and the mucosal immune system.
Resumo:
The Breast International Group (BIG) 1-98 study is a four-arm trial comparing 5 years of monotherapy with tamoxifen or with letrozole or with sequences of 2 years of one followed by 3 years of the other for postmenopausal women with endocrine-responsive early invasive breast cancer. From 1998 to 2003, BIG -98 enrolled 8,010 women. The enhanced design f the trial enabled two complementary analyses of efficacy and safety. Collection of tumor specimens further enabled treatment comparisons based on tumor biology. Reports of BIG 1-98 should be interpreted in relation to each individual patient as she weighs the costs and benefits of available treatments. Clinicaltrials.gov ID: NCT00004205.
Resumo:
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Resumo:
This correspondence studies the formulation of members ofthe Cohen-Posch class of positive time-frequency energy distributions.Minimization of cross-entropy measures with respect to different priorsand the case of no prior or maximum entropy were considered. It isconcluded that, in general, the information provided by the classicalmarginal constraints is very limited, and thus, the final distributionheavily depends on the prior distribution. To overcome this limitation,joint time and frequency marginals are derived based on a "directioninvariance" criterion on the time-frequency plane that are directly relatedto the fractional Fourier transform.