955 resultados para Insulin-like growth factor 1 receptor
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The interaction of acute lymphoblastic leukemia (ALL) blasts with bone marrow (BM) stromal cells (BMSCs) has a positive impact on ALL resistance to chemotherapy. We investigated the modulation of a series of putative asparaginase-resistance/sensitivity genes in B-precursor ALL cells upon coculture with BMSCs. Coculture with stromal cells resulted in increased insulin-like growth factor (IGF)-binding protein 7 (IGFBP7) expression by ALL cells. Assays with IGFBP7 knockdown ALL and stromal cell lines, or with addition of recombinant rIGFBP7 (rIGFBP7) to the culture medium, showed that IGFBP7 acts as a positive regulator of ALL and stromal cells growth, and significantly enhances in-vitro resistance of ALL to asparaginase. In these assays, IGFBP7 function occurred mainly in an insulin-and stromal-dependent manner. ALL cells were found to contribute substantially to extracellular IGFBP7 levels in the conditioned coculture medium. Diagnostic BM plasma from children with ALL had higher levels of IGFBP7 than controls. IGFBP7, in an insulin/IGF-dependent manner, enhanced asparagine synthetase expression and asparagine secretion by BMSCs, thus providing a stromal-dependent mechanism by which IGFBP7 protects ALL cells against asparaginase in this coculture system. Importantly, higher IGFBP7 mRNA levels were associated with lower leukemia-free survival (Cox regression model, P = 0.003) in precursor B-cell Ph(-) ALL patients (n = 147) treated with a contemporary polychemotherapy protocol.
Resumo:
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.
Resumo:
Traditional morphological examinations are not anymore sufficient for a complete evaluation of tumoral tissue and the use of neoplastic markers is of utmost importance. Neoplastic markers can be classified in: diagnostic, prognostic and predictive markers. Three markers were analyzed. 1) Insulin-like growth factor binding protein 2 (IGFBP2) was immunohistochemically examined in prostatic tissues: 40 radical prostatectomies from hormonally untreated patients with their preoperative biopsies, 10 radical prostatectomies from patients under complete androgen ablation before surgery and 10 simple prostatectomies from patients with bladder outlet obstruction. Results were compared with α-methylacyl-CoA racemase (AMACR). IGFBP2 was expressed in the cytoplasm of untreated adenocarcinomas and, to a lesser extent, in HG-PIN; the expression was markedly lower in patients after complete androgen ablation. AMACR was similarly expressed in both adenocarcinoma and HG-PIN, the level being similar in both lesions; the expression was slightly lower in patients after complete androgen ablation. IGFBP2 may be used a diagnostic marker of prostatic adenocarcinomas. 2) Heparan surface proteoglycan immunohistochemical expression was examined in 150 oral squamous cell carcinomas. Follow up information was available in 93 patients (range: 6-34 months, mean: 19±7). After surgery, chemotherapy was performed in 8 patients and radiotherapy in 61 patients. Multivariate and univariate overall survival analyses showed that high expression of syndecan-1 (SYN-1) was associated with a poor prognosis. In patients treated with radiotherapy, such association was higher. SYN-1 is a prognostic marker in oral squamous cell carcinomas; it may also represent a predictive factor for responsiveness to radiotherapy. 3) EGFR was studied in 33 pulmonary adenocarcinomas with traditional DNA sequencing methods and with two mutation-specific antibodies. Overall, the two antibodies had 61.1% sensitivity and 100% specificity in detecting EGFR mutations. EGFR mutation-specific antibodies may represent a predictive marker to identify patients candidate to tyrosine kinase inhibitors therapy.
Resumo:
Aberrant expression of ETS transcription factors, including FLI1 and ERG, due to chromosomal translocations has been described as a driver event in initiation and progression of different tumors. In this study, the impact of prostate cancer (PCa) fusion gene TMPRSS2-ERG was evaluated on components of the insulin-like growth factor (IGF) system and the CD99 molecule, two well documented targets of EWS-FLI1, the hallmark of Ewing sarcoma (ES). The aim of this study was to identify common or distinctive ETS-related mechanisms which could be exploited at biological and clinical level. The results demonstrate that IGF-1R represents a common target of ETS rearrangements as ERG and FLI1 bind IGF-1R gene promoter and their modulation causes alteration in IGF-1R protein levels. At clinical level, this mechanism provides basis for a more rationale use of anti-IGF-1R inhibitors as PCa cells expressing the fusion gene better respond to anti-IGF-1R agents. EWS-FLI1/IGF-1R axis provides rationale for combination of anti-IGF-1R agents with trabectedin, an alkylator agent causing enhanced EWS-FLI1 occupancy on the IGF-1R promoter. TMPRSS2-ERG also influences prognosis relevance of IGF system as high IGF-1R correlates with a better biochemical progression free survival (BPFS) in PCa patients negative for the fusion gene while marginal or no association was found in the total cases or TMPRSS2-ERG-positive cases, respectively. This study indicates CD99 is differentially regulated between ETS-related tumors as CD99 is not a target of ERG. In PCa, CD99 did not show differential expression between TMPRSS2-ERG-positive and –negative cells. A direct correlation was anyway found between ERG and CD99 proteins both in vitro and in patients putatively suggesting that ERG target genes comprehend regulators of CD99. Despite a little trend suggesting a correlation between CD99 expression and a better BPFS, no clinical relevance for CD99 was found in the field of prognostic biomarkers.
Resumo:
Transforming growth factor-β1 (TGFβ1) is a short-lived immune suppressive and profibrotic protein. Its latent precursor is relatively stable and may even protect from fibrosis. Latent TGFβ1 is synthesized by various tissues including the liver and portal, hepatic, and systemic concentrations of latent TGFβ1 were determined in patients with liver cirrhosis and patients with normal liver function to find out whether circulating levels are affected by liver disease.
Resumo:
OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.
Resumo:
Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Resumo:
Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.
Resumo:
Research on endocrine disruption in fish has been dominated by studies on estrogen-active compounds which act as mimics of the natural estrogen, 17β-estradiol (E2), and generally exert their biological actions by binding to and activation of estrogen receptors (ERs). Estrogens play central roles in reproductive physiology and regulate (female) sexual differentiation. In line with this, most adverse effects reported for fish exposed to environmental estrogens relate to sexual differentiation and reproduction. E2, however, utilizes a variety of signaling mechanisms, has multifaceted functions and targets, and therefore the toxicological and ecological effects of environmental estrogens in fish will extend beyond those associated with the reproduction. This review first describes the diversity of estrogen receptor signaling in fish, including both genomic and non-genomic mechanisms, and receptor crosstalk. It then considers the range of non-reproductive physiological processes in fish that are known to be responsive to estrogens, including sensory systems, the brain, the immune system, growth, specifically through the growth hormone/insulin-like growth factor system, and osmoregulation. The diversity in estrogen responses between fish species is then addressed, framed within evolutionary and ecological contexts, and we make assessments on their relevance for toxicological sensitivity as well as ecological vulnerability. The diversity of estrogen actions raises questions whether current risk assessment strategies, which focus on reproductive endpoints, and a few model fish species only, are protective of the wider potential health effects of estrogens. Available - although limited - evidence nevertheless suggests that quantitative environmental threshold concentrations for environmental protection derived from reproductive tests with model fish species are protective for non-reproductive effects as well. The diversity of actions of estrogens across divergent physiological systems, however, may lead to and underestimation of impacts on fish populations as their effects are generally considered on one functional process only and this may underrepresent the impact on the different physiological processes collectively.
Resumo:
PURPOSE Autografts are considered to support bone regeneration. Paracrine factors released from cortical bone might contribute to the overall process of graft consolidation. The aim of this study was to characterize the paracrine factors by means of proteomic analysis. MATERIALS AND METHODS Bone-conditioned medium (BCM) was prepared from fresh bone chips of porcine mandibles and subjected to proteomic analysis. Proteins were categorized and clustered using the bioinformatic tools UNIPROT and PANTHER, respectively. RESULTS Proteomic analysis showed that BCM contains more than 150 proteins, of which 43 were categorized into "secreted" and "extracellular matrix." Growth factors that are not only detectable in BCM, but potentially also target cellular processes involved in bone regeneration, eg, pleiotrophin, galectin-1, transforming growth factor beta (TGF-β)-induced gene (TGFBI), lactotransferrin, insulin-like growth factor (IGF)-binding protein 5, latency-associated peptide forming a complex with TGF-β1, and TGF-β2, were discovered. CONCLUSION The present results demonstrate that cortical bone chips release a large spectrum of proteins with the possibility of modulating cellular aspects of bone regeneration. The data provide the basis for future studies to understand how these paracrine factors may contribute to the complex process of graft consolidation.
Resumo:
INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.