894 resultados para Illinois Wetland Monitoring and Assessment Program.
Resumo:
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.
Resumo:
This paper constitutes a summary of the consensus documents agreed at the First European Workshop on Implant Dentistry University Education held in Prague on 19-22 June 2008. Implant dentistry is becoming increasingly important treatment alternative for the restoration of missing teeth, as patients expectations and demands increase. Furthermore, implant related complications such as peri-implantitis are presenting more frequently in the dental surgery. This consensus paper recommends that implant dentistry should be an integral part of the undergraduate curriculum. Whilst few schools will achieve student competence in the surgical placement of implants this should not preclude the inclusion of the fundamental principles of implant dentistry in the undergraduate curriculum such as the evidence base for their use, indications and contraindications and treatment of the complications that may arise. The consensus paper sets out the rationale for the introduction of implant dentistry in the dental curriculum and the knowledge base for an undergraduate programme in the subject. It lists the competencies that might be sought without expectations of surgical placement of implants at this stage and the assessment methods that might be employed. The paper also addresses the competencies and educational pathways for postgraduate education in implant dentistry.
Resumo:
This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.
Resumo:
Type 1 diabetes mellitus is a chronic disease characterized by blood glucose levels out of normal range due to inability of insulin production. This dysfunction leads to many short- and long-term complications. In this paper, a system for tele-monitoring and tele-management of Type 1 diabetes patients is proposed, aiming at reducing the risk of diabetes complications and improving quality of life. The system integrates Wireless Personal Area Networks (WPAN), mobile infrastructure, and Internet technology along with commercially available and novel glucose measurement devices, advanced modeling techniques, and tools for the intelligent processing of the available diabetes patients information. The integration of the above technologies enables intensive monitoring of blood glucose levels, treatment optimisation, continuous medical care, and improvement of quality of life for Type 1 diabetes patients, without restrictions in everyday life activities.
Resumo:
Introduction: Residents are responsible for the majority of medical student teaching and directly supervise, instruct, and evaluate students. Many organizations now recommend that residency training programs include venues specifically designed to develop resident teaching skills. [See PDF for abstract].
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
Resumo:
Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.
Resumo:
The evolution of pharmaceutical care is identified through a complete review of the literature published in the American Journal of Health-System Pharmacy, the sole comprehensive publication of institutional pharmacy practice. The evolution is categorized according to characteristics of structure (organizational structure, the role of the pharmacist), process (drug delivery systems, formulary management, acquiring drug products, methods to impact drug therapy decisions), and outcomes (cost of drug delivery, cost of drug acquisition and use, improved safety, improved health outcomes) recorded from the 1950s through the 1990s. While significant progress has been made in implementing basic drug distribution systems, levels of pharmacy involvement with direct patient care is still limited.^ A new practice framework suggests enhanced direct patient care involvement through increase in the efficiency and effectiveness of traditional pharmacy services. Recommendations advance internal and external organizational structure relationships that position pharmacists to fully use their unique skills and knowledge to impact drug therapy decisions and outcomes. Specific strategies facilitate expansion of the breadth and scope of each process component in order to expand the depth of integration of pharmacy and pharmaceutical care within the broad healthcare environment. Economic evaluation methods formally evaluate the impact of both operational and clinical interventions.^ Outcome measurements include specific recommendations and methods to increase efficiency of drug acquisition, emphasizing pharmacists' roles that impact physician prescribing decisions. Effectiveness measures include those that improve safety of drug distribution systems, decrease the potential of adverse drug therapy events, and demonstrate that pharmaceutical care can significantly contribute to improvement in overall health status.^ The implementation of the new framework is modeled on a case study at the M.D. Anderson Cancer Center. The implementation of several new drug distribution methods facilitated the redeployment of personnel from distributive functions to direct patient care activities with significant personnel and drug cost reduction. A cost-benefit analysis illustrates that framework process enhancements produced a benefit-to-cost ratio of 7.9. In addition, measures of effectiveness demonstrated significant levels of safety and enhanced drug therapy outcomes. ^
Resumo:
The goal of the current investigation was to compare two monitoring processes (judgments of learning [JOLs] and confidence judgments [CJs]) and their corresponding control processes (allocation of study time and selection of answers to maximize accuracy, respectively) in 5- to 7-year-old children (N=101). Children learned the meaning of Japanese characters and provided JOLs after a study phase and CJs after a memory test. They were given the opportunity to control their learning in self-paced study phases, and to control their accuracy by placing correct answers into a treasure chest and incorrect answers into a trash can. All three age groups gave significantly higher CJs for correct compared to incorrect answers, with no age-related differences in the magnitude of this difference, suggesting robust metacognitive monitoring skills in children as young as 5. Furthermore, a link between JOLs and study time was found in the 6- and 7-year-olds, such that children spent more time studying items with low JOLs compared to items with high JOLs. Also, 6- and 7-year-olds but not 5-year-olds spent more time studying difficult items compared to easier items. Moreover, age-related improvements were found in children's use of CJs to guide their selection of answers: although children as young as 5 placed their most confident answers in the treasure chest and least confident answers in the trash can, this pattern was more robust in older children. Overall, results support the view that some metacognitive judgments may be acted upon with greater ease than others among young children.
Resumo:
Contemporary models of self-regulated learning emphasize the role of distal motivational factors for student's achievement, on the one side, and the proximal role of metacognitive monitoring and control for learning and test outcomes, on the other side. In the present study, two larger samples of elementary school children (9- and 11-year-olds) were included and their mastery-oriented motivation, metacognitive monitoring and control skills were integrated into structural equation models testing and comparing the relative impact of these different constituents for self-regulated learning. For one, results indicate that the factorial structure of monitoring, control and mastery motivation was invariant across the two age groups. Of specific interest was the finding that there were age-dependent structural links between monitoring, control, and test performance (closer links in the older compared to the younger children), with high confidence yielding a direct and positive effect on test performance and a direct and negative effect on adequate control behavior in the achievement test. Mastery-oriented motivation was not found to be substantially associated with monitoring (confidence), control (detection and correction of errors), or test performance underlining the importance of proximal, metacognitive factors for test performance in elementary school children.
Resumo:
This multi-phase study examined the influence of retrieval processes on children’s metacognitive processes in relation to and in interaction with achievement level and age. First, N = 150 9/10- and 11/12-year old high and low achievers watched an educational film and predicted their test performance. Children then solved a cloze test regarding the film content including answerable and unanswerable items and gave confidence judgments to every answer. Finally, children withdrew answers that they believed to be incorrect. All children showed adequate metacognitive processes before and during test taking with 11/12- year-olds outperforming 9/10-year-olds when considering characteristics of on-going retrieval processes. As to the influence of achievement level, high compared to low achievers proved to be more accurate in their metacognitive monitoring and controlling. Results suggest that both cognitive resources (operationalized through achievement level) and mnemonic experience (assessed through age) fuel metacognitive development. Nevertheless, when facing higher demands regarding retrieval processes, experience seems to play the more important role.