909 resultados para High throughput glucose assay
Resumo:
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.
Resumo:
Since the advent of high-throughput DNA sequencing technologies, the ever-increasing rate at which genomes have been published has generated new challenges notably at the level of genome annotation. Even if gene predictors and annotation softwares are more and more efficient, the ultimate validation is still in the observation of predicted gene product( s). Mass-spectrometry based proteomics provides the necessary high throughput technology to show evidences of protein presence and, from the identified sequences, confirmation or invalidation of predicted annotations. We review here different strategies used to perform a MS-based proteogenomics experiment with a bottom-up approach. We start from the strengths and weaknesses of the different database construction strategies, based on different genomic information (whole genome, ORF, cDNA, EST or RNA-Seq data), which are then used for matching mass spectra to peptides and proteins. We also review the important points to be considered for a correct statistical assessment of the peptide identifications. Finally, we provide references for tools used to map and visualize the peptide identifications back to the original genomic information.
Resumo:
1406 I. 1407 II. 1408 III. 1410 IV. 1411 V. 1413 VI. 1416 VII. 1418 1418 References 1419 SUMMARY: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Resumo:
Ultra-high-throughput sequencing (UHTS) techniques are evolving rapidly and may soon become an affordable and routine tool for sequencing plant DNA, even in smaller plant biology labs. Here we review recent insights into intraspecific genome variation gained from UHTS, which offers a glimpse of the rather unexpected levels of structural variability among Arabidopsis thaliana accessions. The challenges that will need to be addressed to efficiently assemble and exploit this information are also discussed.
Resumo:
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Resumo:
Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Resumo:
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Resumo:
MOTIVATION: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Resumo:
PURPOSE OF REVIEW: One of the seven key scientific priorities identified in the road map on HIV cure research is to 'determine the host mechanisms that control HIV replication in the absence of therapy'. This review summarizes the recent work in genomics and in epigenetic control of viral replication that is relevant for this mission. RECENT FINDINGS: New technologies allow the joint analysis of host and viral transcripts. They identify the patterns of antisense transcription of the viral genome and its role in gene regulation. High-throughput studies facilitate the assessment of integration at the genome scale. Integration site, orientation and host genomic context modulate the transcription and should also be assessed at the level of single cells. The various models of latency in primary cells can be followed using dynamic study designs to acquire transcriptome and proteome data of the process of entry, maintenance and reactivation of latency. Dynamic studies can be applied to the study of transcription factors and chromatin modifications in latency and upon reactivation. SUMMARY: The convergence of primary cell models of latency, new high-throughput quantitative technologies applied to the study of time series and the identification of compounds that reactivate viral transcription bring unprecedented precision to the study of viral latency.
Resumo:
Eukaryotic transcription is tightly regulated by transcriptional regulatory elements, even though these elements may be located far away from their target genes. It is now widely recognized that these regulatory elements can be brought in close proximity through the formation of chromatin loops, and that these loops are crucial for transcriptional regulation of their target genes. The chromosome conformation capture (3C) technique presents a snapshot of long-range interactions, by fixing physically interacting elements with formaldehyde, digestion of the DNA, and ligation to obtain a library of unique ligation products. Recently, several large-scale modifications to the 3C technique have been presented. Here, we describe chromosome conformation capture sequencing (4C-seq), a high-throughput version of the 3C technique that combines the 3C-on-chip (4C) protocol with next-generation Illumina sequencing. The method is presented for use in mammalian cell lines, but can be adapted to use in mammalian tissues and any other eukaryotic genome.
Resumo:
Le syndrome métabolique (SM) associe dyslipidémie, hypertension, intolérance au glucose, état pro-inflammatoire/prothrombotique et surpoids, dont nous vous présentons une hypothèse physiopathologique émergente. Des recherches récentes ont montré que des dysfonctions mitochondriales induisent l'accumulation intracellulaire d'acylCoA et de diacylglycérol, inactivant la signalisation de l'insuline par un effet direct sur les transporteurs du glucose insulino-dépendants. Un défaut de la phosphorylation oxydative conduirait à l'insulino-résistance. Des atteintes de la fonction mitochondriale sont présentes dans le muscle, le foie, le pancréas et les vaisseaux sanguins et contribuent aux manifestations cliniques. Ces observations des atteintes mitochondriales nous montrent un lien entre la clinique et la physiopathologie du SM. The metabolic syndrome is a cluster of metabolic risk factors including: atherogenic dyslipidemia, elevated blood pressure, high plasma glucose and a prothrombotic and proinflammatory state, frequently associated to overweight. Impaired cell metabolism has been suggested as a relevant pathophysiological process. Indeed, the accumulation of intracellular fatty acylCoA and diacylglycerol, which then activate critical signal transduction pathways that ultimatly lead to suppression of insulin signalisation. Therefore a defect in mitochondrial function may be responsible for insulin resistance. Moreover, mitochondrial dysfunction has been found to take place in organs such as skeletal muscle, liver, pancreas and smoth vascular cells suggesting that mitochondrial defect could play a critical role in the occurence of cardiovascular diseases.
Resumo:
Purpose:To describe a novel in silico method to gather and analyze data from high-throughput heterogeneous experimental procedures, i.e. gene and protein expression arrays. Methods:Each microarray is assigned to a database which handles common data (names, symbols, antibody codes, probe IDs, etc.). Links between informations are automatically generated from knowledge obtained in freely accessible databases (NCBI, Swissprot, etc). Requests can be made from any point of entry and the displayed result is fully customizable. Results:The initial database has been loaded with two sets of data: a first set of data originating from an Affymetrix-based retinal profiling performed in an RPE65 knock-out mouse model of Leber's congenital amaurosis. A second set of data generated from a Kinexus microarray experiment done on the retinas from the same mouse model has been added. Queries display wild type versus knock out expressions at several time points for both genes and proteins. Conclusions:This freely accessible database allows for easy consultation of data and facilitates data mining by integrating experimental data and biological pathways.