989 resultados para Higgs Physics
Resumo:
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30 mu m could absorb 90% of the incident light at 1.55 mu m wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.
Resumo:
Resumo:
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.
Resumo:
Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.
Resumo:
We briefly introduce the current status and progress in the field of radioactive ion beam physics and the study of super-heavy nuclei. Some important problems and research directions are outlined, such as the sub-barrier fusion reaction, the direct reaction at Fermi energy and high energies, the property of nuclei at drip-lines, new magic numbers and new collective motion modes for unstable nuclei and the synthesis and study of the super-heavy nuclei.
Resumo:
An internal target experiment at HIRFL-CSRm is planned for hadron physics, which focuses on hadron spectroscopy, polarized strangeness production and medium effect. A conceptual design of Hadron Physics Lanzhou Spectrometer (HPLUS) is discussed. Related computing framework involves event generation, simulation, reconstruction and final analysis. The R&D works on internal target facilities and sub-detectors are presented briefly.
Resumo:
The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR.
Resumo:
The commissioning of the cooler storage rings (CSR) was successful, and the facility provides new possibilities for atomic physics with highly charged ions. Bare carbon, argon ions, were successfully stored in the main ring CSRm, cooled by cold electron beam, and accelerated up to 1 GeV/u. Heavier ions as Xe44+ and Kr28+ were also successfully stored in the CSRs. Both of the rings are equipped with new generation of electron coolers which can provide different electron beam density distributions. Electron-ion interactions, high precision X-ray spectroscopy, complete kinematical measurements for relativistic ion-atom collisions will be performed at CSRs. Laser cooling of heavy ions are planned as well. The physics programs and the present status will be summarized.
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.