989 resultados para Heparan-sulfate Proteoglycan
Resumo:
We combined 33 ice core records, 13 from the Northern Hemisphere and 20 from the Southern Hemisphere, to determine the timing and magnitude of the great Kuwae eruption in the mid-15th century. We extracted volcanic deposition signals by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31 year running median absolute deviation. By accounting for the dating uncertainties associated with each record, these ice core records together reveal a large volcanogenic acid deposition event during 1453 - 1457 A. D. The results suggest only one major stratospheric injection from the Kuwae eruption and confirm previous findings that the Kuwae eruption took place in late 1452 or early 1453, which may serve as a reference to evaluate and improve the dating of ice core records. The average total sulfate deposition from the Kuwae eruption was 93 kg SO4/km(2) in Antarctica and 25 kg SO4/km(2) in Greenland. The deposition in Greenland was probably underestimated since it was the average value of only two northern Greenland sites with very low accumulation rates. After taking the spatial variation into consideration, the average Kuwae deposition in Greenland was estimated to be 45 kg SO4/km(2). By applying the same technique to the other major eruptions of the past 700 years our result suggests that the Kuwae eruption was the largest stratospheric sulfate event of that period, probably surpassing the total sulfate deposition of the Tambora eruption of 1815, which produced 59 kg SO4/km(2) in Antarctica and 50 kg SO4/km(2) in Greenland.
Resumo:
BACKGROUND Lower extremity ischemia-reperfusion injury (IRI)-prolonged ischemia and the subsequent restoration of circulation-may result from thrombotic occlusion, embolism, trauma, or tourniquet application in surgery. The aim of this study was to assess the effect of low-molecular-weight dextran sulfate (DXS) on skeletal muscle IRI. METHODS Rats were subjected to 3 h of ischemia and 2 or 24 h of reperfusion. To induce ischemia the femoral artery was clamped and a tourniquet placed under the maintenance of the venous return. DXS was injected systemically 10 min before reperfusion. Muscle and lung tissue samples were analyzed for deposition of immunoglobulin M (IgM), IgG, C1q, C3b/c, fibrin, and expression of vascular endothelial-cadherin and bradykinin receptors b1 and b2. RESULTS Antibody deposition in reperfused legs was reduced by DXS after 2 h (P < 0.001, IgM and IgG) and 24 h (P < 0.001, IgM), C3b/c deposition was reduced in muscle and lung tissue (P < 0.001), whereas C1q deposition was reduced only in muscle (P < 0.05). DXS reduced fibrin deposits in contralateral legs after 24 h of reperfusion but did not reduce edema in muscle and lung tissue or improve muscle viability. Bradykinin receptor b1 and vascular endothelial-cadherin expression were increased in lung tissue after 24 h of reperfusion in DXS-treated and non-treated rats but bradykinin receptor b2 was not affected by IRI. CONCLUSIONS In contrast to studies in myocardial infarction, DXS did not reduce IRI in this model. Neither edema formation nor viability was improved, whereas deposition of complement and coagulation components was significantly reduced. Our data suggest that skeletal muscle IRI may not be caused by the complement or coagulation alone, but the kinin system may play an important role.
Resumo:
The effect of long-term exposure to elevated pCO2 concentrations on sulfate and nitrate assimilation was studied under field conditions using leaves from Quercus ilex and Quercus pubescens trees growing with ambient or elevated CO2 concentrations in the vicinity of three natural CO2 springs, Bossoleto, Laiatico and Sulfatara, in Tuscany, Italy. The activity of the key enzymes of sulfate assimilation, adenosine 5′-phosphosulfate reductase (APR) and nitrate assimilation, nitrate reductase (NR), were measured together with the levels of acid soluble thiols, and soluble non-proteinogenic nitrogen compounds. Whereas NR activity remained unaffected in Q. ilex or increased Q. pubescence, APR activity decreased in the area of CO2 springs. The latter changes were often accompanied by increased GSH concentrations, apparently synthesized from H2S and SO2 present in the gas mixture emitted from the CO2 springs. Thus, the diminished APR activity in leaves of Q. ilex and Q. pubescence from spring areas can best be explained by the exposure to gaseous sulfur compounds. Although the concentrations of H2S and SO2 in the gas mixture emitted from the vents at the CO2 springs were low at the Bossoleto and Laiatico spring, these sulfur gases pose physiological effects, which may override consequences of elevated pCO2.
Resumo:
Cysteine synthesis from sulfide andO-acetyl-L-serine (OAS) is a reaction interconnecting sulfate, nitrogen, and carbon assimilation. UsingLemna minor, we analyzed the effects of omission of CO2 from the atmosphere and simultaneous application of alternative carbon sources on adenosine 5′-phosphosulfate reductase (APR) and nitrate reductase (NR), the key enzymes of sulfate and nitrate assimilation, respectively. Incubation in air without CO2 led to severe decrease in APR and NR activities and mRNA levels, but ribulose-1,5-bisphosphate carboxylase/oxygenase was not considerably affected. Simultaneous addition of sucrose (Suc) prevented the reduction in enzyme activities, but not in mRNA levels. OAS, a known regulator of sulfate assimilation, could also attenuate the effect of missing CO2 on APR, but did not affect NR. When the plants were subjected to normal air after a 24-h pretreatment in air without CO2, APR and NR activities and mRNA levels recovered within the next 24 h. The addition of Suc and glucose in air without CO2 also recovered both enzyme activities, with OAS again influenced only APR.35SO4 2− feeding showed that treatment in air without CO2 severely inhibited sulfate uptake and the flux through sulfate assimilation. After a resupply of normal air or the addition of Suc, incorporation of 35S into proteins and glutathione greatly increased. OAS treatment resulted in high labeling of cysteine; the incorporation of 35S in proteins and glutathione was much less increased compared with treatment with normal air or Suc. These results corroborate the tight interconnection of sulfate, nitrate, and carbon assimilation.
Resumo:
Abstract: The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells; however, oxidized glutathione was equally distributed between the two cell types. Chilling at 12 °C induced oxidative stress which resulted in increased concentrations of oxidized glutathione in both cell types and a prominent increase of APR mRNA and activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase, as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA and activity were at higher levels in root tips than in the mature root and were greatly increased after chilling. These results demonstrate that chilling stress affected the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.
Resumo:
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C4 monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C4 photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C3, C3-C4, C4-like, and C4 species of the dicot genusFlaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C4-like and C4 species than in C3 and C3-C4 species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C4 speciesFlaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C4 plants and therefore is neither a prerequisite nor a consequence of C4photosynthesis.
Resumo:
Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5′-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO3 −, NH4 +, or glutamine (Gln), or 1 mM O-acetylserine (OAS). 35SO4 2− feeding showed that after addition of NH4 +, Gln, or OAS to nitrogen-starved plants, incorporation of 35S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.
Resumo:
The enzyme catalysing the reduction of adenosine 5′-phosphosulfate (AdoPS) to sulfite in higher plants, AdoPS reductase, is considered to be the key enzyme of assimilatory sulfate reduction. In order to address its reaction mechanism, the APR2 isoform of this enzyme from Arabidopsis thaliana was overexpressed in Escherichia coli and purified to homogeneity. Incubation of the enzyme with [35S]AdoPS at 4 °C resulted in radioactive labelling of the protein. Analysis of APR2 tryptic peptides revealed 35SO2–3 bound to Cys248, the only Cys conserved between AdoPS and prokaryotic phosphoadenosine 5′-phosphosulfate reductases. Consistent with this result, radioactivity could be released from the protein by incubation with thiols, inorganic sulfide and sulfite. The intermediate remained stable, however, after incubation with sulfate, oxidized glutathione or AdoPS. Because truncated APR2, missing the thioredoxin-like C-terminal part, could be labelled even at 37 °C, and because this intermediate was more stable than the complete protein, we conclude that the thioredoxin-like domain was required to release the bound SO2–3 from the intermediate. Taken together, these results demonstrate for the first time the binding of 35SO2–3 from [35S]AdoPS to AdoPS reductase and its subsequent release, and thus contribute to our understanding of the molecular mechanism of AdoPS reduction in plants.
Resumo:
We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.