872 resultados para Hand-held devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric systems are increasingly being used as a means for authentication to provide system security in modern technologies. The performance of a biometric system depends on the accuracy, the processing speed, the template size, and the time necessary for enrollment. While much research has focused on the first three factors, enrollment time has not received as much attention. In this work, we present the findings of our research focused upon studying user’s behavior when enrolling in a biometric system. Specifically, we collected information about the user’s availability for enrollment in respect to the hand recognition systems (e.g., hand geometry, palm geometry or any other requiring positioning the hand on an optical scanner). A sample of 19 participants, chosen randomly apart their age, gender, profession and nationality, were used as test subjects in an experiment to study the patience of users enrolling in a biometric hand recognition system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the results of preliminary test on the interaction between fingertip and touch screen. The objective of this study is to identify the fingertip posture when interacting with touch screen devices. Ten participants, 7 males and 3 females, participated in this study. The participants were asked to touch targets on the mobile devices screen by tapping them sequentially and connecting them. The participants performed the tasks in a sitting posture. A tablet with 10 inches screen and a mobile phone with 4 inches screen were used in the study. The results showed that all participants dominantly used their thumb to interact with the mobile phone in single and two hands postures. The common thumb posture adopted by the participants is the combination of the 60° pitch and 0° roll angles. While for interaction with tablet in various postures observed in the study, the participants commonly used their index fingers in the combination of 60° pitch and 0° roll angles. This study also observed the participant with long finger nails touched targets on the mobile devices screen by using her index or middle fingers very low pitch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel method was employed in the synthesis of di-urethane cross-linked poly( caprolactone) (PCL(530)/siloxane biohybrid ormolytes incorporating either a mixture of lithium triflate (LiCF3SO3) and the ionic liquid (IL) 1-ethyl-3-methyl imidazolium tetrafluoroborate ([Emim]BF4), or solely with [Emim]BF4 or LiCF3SO3. The ormolyte doped with [Emim]BF4 is thermally more stable and exhibits higher ionic conductivity (4 x 10-4 and 2 x 10-3 S cm-1 at 36 and 98 ºC, respectively) than those containing the LiCF3SO3/[Emim]BF4 mixture or just LiCF3SO3. The three ormolytes were employed in the production of glass/ITO/ormolyte/WO3/ITO/glass electrochromic devices (ECDs) designated as ECD@Y with Y = Li-[Emim]BF4, [Emim]BF4 and Li. The three ECDs displayed fast switching speed (ca. 30 s). ECD@Li-[Emim]BF4 exhibited an electrochromic contrast of 18.4 % and an optical density change of 0.11 in the visible region, the coloration efficiency attained at 555 nm was 159 and 80.2 cm-2 C-1 in the “on” and “off” states, respectively, and the open circuit memory was 48 hours. In the “on” state the CIE 1931 color space coordinates were x = 0.29 and y = 0.30, corresponding to blue color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer electrolytes are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Generically, solid polymer electrolytes (SPEs) are mixtures of salts with soft polar polymers. SPEs have many advantages including high energy density, no risk of leakage, no issues related to the presence of solvent, wide electrochemical stability windows, simplified processability and light weight. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying high ionic conductivity we have produced in the present work, flexible films based on different polymers or hybrids incorporating different salts. The polymer electrolytes studied here have been characterized by means of Differential Scanning Calorimetry, Thermogravimetric Analysis, X-ray diffraction, Polarized Optical Microscopy, complex impedance spectroscopy and cyclic voltammetry. An evaluation of the performance of the sample with the highest conductivity as electrolyte in all solid-state ECDs was performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T  8 % at λ = 686 nm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.