884 resultados para HISTORICAL DATA-ANALYSIS
Resumo:
Systematic, high-quality observations of the atmosphere, oceans and terrestrial environments are required to improve understanding of climate characteristics and the consequences of climate change. The overall aim of this report is to carry out a comparative assessment of approaches taken to addressing the state of European observations systems and related data analysis by some leading actors in the field. This research reports on approaches to climate observations and analyses in Ireland, Switzerland, Germany, The Netherlands and Austria and explores options for a more coordinated approach to national responses to climate observations in Europe. The key aspects addressed are: an assessment of approaches to develop GCOS and provision of analysis of GCOS data; an evaluation of how these countries are reporting development of GCOS; highlighting best practice in advancing GCOS implementation including analysis of Essential Climate Variables (ECVs); a comparative summary of the differences and synergies in terms of the reporting of climate observations; an overview of relevant European initiatives and recommendations on how identified gaps might be addressed in the short to medium term.
Resumo:
Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.
Resumo:
Advanced Placement is a series of courses and tests designed to determine mastery over introductory college material. It has become part of the American educational system. The changing conception of AP was examined using critical theory to determine what led to a view of continual success. The study utilized David Armstrong’s variation of Michel Foucault’s critical theory to construct an analytical framework. Black and Ubbes’ data gathering techniques and Braun and Clark’s data analysis were utilized as the analytical framework. Data included 1135 documents: 641 journal articles, 421 newspaper articles and 82 government documents. The study revealed three historical ruptures correlated to three themes containing subthemes. The first rupture was the Sputnik launch in 1958. Its correlated theme was AP leading to school reform with subthemes of AP as reform for able students and AP’s gaining of acceptance from secondary schools and higher education. The second rupture was the Nation at Risk report published in 1983. Its correlated theme was AP’s shift in emphasis from the exam to the course with the subthemes of AP as a course, a shift in AP’s target population, using AP courses to promote equity, and AP courses modifying curricula. The passage of the No Child Left Behind Act of 2001 was the third rupture. Its correlated theme was AP as a means to narrow the achievement gap with the subthemes of AP as a college preparatory program and the shifting of AP to an open access program. The themes revealed a perception that progressively integrated the program into American education. The AP program changed emphasis from tests to curriculum, and is seen as the nation’s premier academic program to promote reform and prepare students for college. It has become a major source of income for the College Board. In effect, AP has become an agent of privatization, spurring other private entities into competition for government funding. The change and growth of the program over the past 57 years resulted in a deep integration into American education. As such the program remains an intrinsic part of the system and continues to evolve within American education.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
Tide gauge data are identified as legacy data given the radical transition between observation method and required output format associated with tide gauges over the 20th-century. Observed water level variation through tide-gauge records is regarded as the only significant basis for determining recent historical variation (decade to century) in mean sea-level and storm surge. There are limited tide gauge records that cover the 20th century, such that the Belfast (UK) Harbour tide gauge would be a strategic long-term (110 years) record, if the full paper-based records (marigrams) were digitally restructured to allow for consistent data analysis. This paper presents the methodology of extracting a consistent time series of observed water levels from the 5 different Belfast Harbour tide gauges’ positions/machine types, starting late 1901. Tide-gauge data was digitally retrieved from the original analogue (daily) records by scanning the marigrams and then extracting the sequential tidal elevations with graph-line seeking software (Ungraph™). This automation of signal extraction allowed the full Belfast series to be retrieved quickly, relative to any manual x–y digitisation of the signal. Restructuring variably lengthed tidal data sets to a consistent daily, monthly and annual file format was undertaken by project-developed software: Merge&Convert and MergeHYD allow consistent water level sampling both at 60 min (past standard) and 10 min intervals, the latter enhancing surge measurement. Belfast tide-gauge data have been rectified, validated and quality controlled (IOC 2006 standards). The result is a consistent annual-based legacy data series for Belfast Harbour that includes over 2 million tidal-level data observations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors are nonzero on the i’th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property. We then prove original results in modern analysis on graphs. We extend results on spectral graph wavelets to create vertex-dyanamic spectral graph wavelets whose support depends on both scale and translation parameters. We prove that Spielman’s Twice-Ramanujan graph sparsifying algorithm cannot outperform his conjectured optimal sparsification constant. Finally, we present numerical results on graph conditioning, in which edges of a graph are rescaled to best approximate the complete graph and reduce average commute time.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.
Resumo:
Dissertação de Mestrado, Gestão de Unidades de Saúde, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
Interest rate sensitivity assessment framework based on fixed income yield indexes is developed and applied to two types of emerging market corporate debt: investment grade and high yield exposures. Our research advances beyond the correlation analyses focused on co- movements in yields and/or spreads of risky and risk-free assets. We show that correlation- based analyses of interest rate sensitivity could appear rather inconclusive and, hence, we investigate the bottom line profit and loss of a hypothetical model portfolio of corporates. We consider historical data covering the period 2002 – 2015, which enable us to assess interest rate sensitivity of assets during the development, the apogee, and the aftermath of the global financial crisis. Based on empirical evidence, both for investment and speculative grades securities, we find that the emerging market corporates exhibit two different regimes of sensitivity to interest rate changes. We observe switching from a positive sensitivity under the normal market conditions to a negative one during distressed phases of business cycles. This research sheds light on how financial institutions may approach interest rate risk management, evidencing that even plain vanilla portfolios of emerging market corporates, which on average could appear rather insensitive to the interest rate risk in fact present a binary behavior of their interest rate sensitivities. Our findings allow banks and financial institutions for optimizing economic capital under Basel III regulatory capital rules.
Resumo:
With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.
Resumo:
MEGAGEO - Moving megaliths in the Neolithic is a project that intends to find the provenience of lithic materials in the construction of tombs. A multidisciplinary approach is carried out, with researchers from several of the knowledge fields involved. This work presents a spatial data warehouse specially developed for this project that comprises information from national archaeological databases, geographic and geological information and new geochemical and petrographic data obtained during the project. The use of the spatial data warehouse proved to be essential in the data analysis phase of the project. The Redondo Area is presented as a case study for the application of the spatial data warehouse to analyze the relations between geochemistry, geology and the tombs in this area.
Resumo:
This paper explores how people communicate in reference to local interests and suggests information and communication technology (ICT) design for enhancement of local community networks. Qualitative data was gathered from participant observations of local community collective action and open interviews with active community members. Data analysis revealed concepts, leading to categories in relation to local interactions and interests. Design suggestions consider introducing people to local community private-strategic activity via public displays that indicate simple entry points to active participation, and creating information collections according to local community perspectives for long-term reference.
Resumo:
Qualitative research methods require transparency to ensure the ‘trustworthiness’ of the data analysis. The intricate processes of organizing, coding and analyzing the data are often rendered invisible in the presentation of the research findings, which requires a ‘leap of faith’ for the reader. Computer assisted data analysis software can be used to make the research process more transparent, without sacrificing rich, interpretive analysis by the researcher. This article describes in detail how one software package was used in a poststructural study to link and code multiple forms of data to four research questions for fine-grained analysis. This description will be useful for researchers seeking to use qualitative data analysis software as an analytic tool.
Resumo:
This is an important book that ought to launch a debate about how we research our understanding of the world, it is an innovative intervention in a vital public issue, and it is an elegant and scholarly hard look at what is actually happening. Jean Seaton, Prof of Media History, U of Westminster, UK & Official Historian of the BBC -- Summary: This book investigates the question of how comparative studies of international TV news (here: on violence presentation) can best be conceptualized in a way that allows for crossnational, comparative conclusions on an empirically validated basis. This book shows that such a conceptualization is necessary in order to overcome existing restrictions in the comparability of international analysis on violence presentation. Investigated examples include the most watched news bulletins in Great Britain (10o'clock news on the BBC), Germany (Tagesschau on ARD) and Russia (Vremja on Channel 1). This book highlights a substantial cross-national violence news flow as well as a cross-national visual violence flow (key visuals) as distinct transnational components. In addition, event-related textual analysis reveals how the historical rootedness of nations and its symbols of power are still manifested in televisual mediations of violence. In conclusion, this study lobbies for a conscientious use of comparative data/analysis both in journalism research and practice in order to understand what it may convey in the different arenas of today’s newsmaking.