978 resultados para Ginzburg-Landau theory
Resumo:
This research studies information systems that adapt to the context in which they are used and provides recommendations on how the design of such systems can be improved. This thesis covers the problem of context-awareness via two case studies in the insurance and transportation industries. The study highlights shortcomings in the understanding of the relationship between information systems and context. Furthermore, it presents a new, theory-informed approach to design, and provides guidance for system developers seeking to implement context-aware information systems.
Resumo:
In 2010, six Threshold Learning Outcomes (TLOs) for law were developed by the Australian Learning and Teaching Council's Discipline Scholars: Law. The final of these outcomes, TLO 6, concerns self-management. This thesis examines strategies for implementing self-management in Australian legal education by first contextualising the development of TLO 6 in light of other relevant national and international developments in higher education, and secondly, analysing this learning outcome through the lens of Self-Determination Theory (SDT), an influential branch of educational psychology. It is argued that the central concept of autonomous self-regulation in SDT provides insights into factors that are relevant to law students’ capacities for long-term self-management, which is reinforced by analysis of the literature on law students’ distress. Accordingly, curriculum design that supports students’ autonomy may simultaneously promote students’ self-management capacities. The discussion of theoretical and practical perspectives on autonomy supportive curriculum design in this thesis thus illuminates potential pedagogical approaches for the implementation of TLO 6 in Australian legal curricula.
Resumo:
Amonia borane (AB) has been identified as a potential candidate highcapacity hydrogen storage material. This work probes the adsorption and dissociation of AB inside and outside single-walled carbon nanotubes (SWCNTs) within the framework of density functional theory. The dissociation barriers of AB have been calculated and compared with that of the isolated AB molecule. On the basis of the present calculations, no notable improvement results from SWCNT confinement; on the contrary, the dissociation barrier slightly increases with respect to isolated AB.
Resumo:
First principle calculations for a hexagonal (graphene-like) boron nitride (g-BN) monolayer sheet in the presence of a boron-atom vacancy show promising properties for capture and activation of carbon dioxide. CO2 is found to decompose to produce an oxygen molecule via an intermediate chemisorption state on the defect g-BN sheet. The three stationary states and two transition states in the reaction pathway are confirmed by minimum energy pathway search and frequency analysis. The values computed for the two energy barriers involved in this catalytic reaction after enthalpy correction indicate that the catalytic reaction should proceed readily at room temperature.
Resumo:
Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.
Resumo:
The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.
Resumo:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
The Design Science Research Roadmap (DSR-Roadmap) [1] aims to give detailed methodological guidance to novice researchers in Information Systems (IS) DSR. Focus group evaluation, one phase of the overall study, of the evolving DSR-Roadmap revealed that a key difficulty faced by both novice and expert researchers in DSR, is abstracting design theory from design. This paper explores the extension of the DSR-Roadmap by employing IS deep structure ontology (BWW [2-4]) as a lens on IS design to firstly yield generalisable design theory, specifically 'IS Design Theory' (ISDT) elements [5]. Consideration is next given to the value of BWW in the application of the design theory by practitioners. Results of mapping BWW constructs to ISDT elements suggest that the BWW is promising as a common language between design researchers and practitioners, facilitating both design theory and design implementation
Resumo:
This thesis analysed the theoretical and ontological issues of previous scholarship concerning information technology and indigenous people. As an alternative, the thesis used the framework of actor-network-theory, especially through historiographical and ethnographic techniques. The thesis revealed an assemblage of indigenous/digital enactments striving for relevance and avoiding obsolescence. It also recognised heterogeneities- including user-ambivalences, oscillations, noise, non-coherences and disruptions - as part of the milieu of the daily digital lives of indigenous people. By taking heterogeneities into account, the thesis ensured that the data “speaks for itself” and that social inquiry is not overtaken by ideology and ontology.
Resumo:
Evidence within Australia and internationally suggests parenthood as a risk factor for inactivity; however, research into understanding parental physical activity is scarce. Given that active parents can create active families and social factors are important for parents’ decision making, the authors investigated a range of social influences on parents’ intentions to be physically active. Parents (N = 580; 288 mothers and 292 fathers) of children younger than 5 years completed an extended Theory of Planned Behavior questionnaire either online or paper based. For both genders, attitude, control factors, group norms, friend general support, and an active parent identity predicted intentions, with social pressure and family support further predicting mothers’ intentions and active others further predicting fathers’ intentions. Attention to these factors and those specific to the genders may improve parents’ intentions to be physically active, thus maximizing the benefits to their own health and the healthy lifestyle practices for other family members.
Resumo:
BACKGROUND: Donor retention is vital to blood collection agencies. Past research has highlighted the importance of early career behavior for long-term donor retention, yet research investigating the determinants of early donor behavior is scarce. Using an extended Theory of Planned Behavior (TPB), this study sought to identify the predictors of first-time blood donors' early career retention. STUDY DESIGN AND METHODS: First-time donors (n = 256) completed three surveys on blood donation. The standard TPB predictors and self-identity as a donor were assessed 3 weeks (Time 1) and at 4 months (Time 2) after an initial donation. Path analyses examined the utility of the extended TPB to predict redonation at 4 and 8 months after initial donation. RESULTS: The extended TPB provided a good fit to the data. Post-Time 1 and 2 behavior was consistently predicted by intention to redonate. Further, intention was predicted by attitudes, perceived control, and self-identity (Times 1 and 2). Donors' intentions to redonate at Time 1 were the strongest predictor of intention to donate at Time 2, while donors' behavior at Time 1 strengthened self-identity as a blood donor at Time 2. CONCLUSION: An extended TPB framework proved efficacious in revealing the determinants of first-time donor retention in an initial 8-month period. The results suggest that collection agencies should intervene to bolster donors' attitudes, perceived control, and identity as a donor during this crucial post–first donation period.