1000 resultados para General strikes.
Resumo:
The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.
Resumo:
We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.
Resumo:
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the alpha-decay half-lives of superheavy nuclei (SHN) using the experimental alpha-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (Q(Audi)) and Muntian et al. (Q(M)) have been tested to find that the cluster model with Q(Audi) and Q(M) could provide reliable results for Z > 112 but the GLDM with Q(Audi) for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.
Resumo:
We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.
Resumo:
CSR, a new accelerator project under the construction. to upgrade the existing heavy ion cyclotron system in Lanzhou, is a double cooling-storage-ring system. It consists of a main ring and an experimental ring. The heavy ion beams from the cyclotron system will be accumulated and accelerated first in the main ring, then extracted to produce radioactive ion beams or high-Z beams, and finally to be send to the second ring for internal-target experiments.
Resumo:
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile.
Resumo:
Combination of Ni2O3 and solid acid with Bronsted acid sites and Lewis acid sites (such as HZSM-5 and H-beta) could dramatically improve fire retardancy of polyolefin, including polypropylene and linear low-density polyethylene. This is mainly attributed to the formation of a large amount of residual char from degradation products of polyolefin in the intermediate stage of combustion. Thus, the amount of flammable components diffusing into the flame zone was small.
Resumo:
A variety of uniform lanthanide orthoborates LnBO(3) (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates have been successfully prepared by a general and facile conversion method. One-dimensional (ID) lanthanide hydroxides were first prepared through a simple hydrothermal process. Subsequently, uniform LnBO(3) microplates were synthesized at the expense of the ID precursors during a hydrothermal conversion process. The whole process in this method was carried out in aqueous condition without the use of any organic solvents, surfactant, or catalyst. The as-obtained rare earth ions doped GdBO3 and TbBO3 microplates show strong light emissions with different colors coming from different activator ions under ultraviolet excitation or low-voltage electron beam excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel display devices.
Resumo:
Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.