1000 resultados para Geiger, Ludwig, 1848-1919.
Resumo:
The gated operation is proposed as an effective method to reduce the noise in pixel detectors based on Geiger mode avalanche photodiodes. A prototype with the sensor and the front-end electronics monolithically integrated has been fabricated with a conventional HV-CMOS process. Experimental results demonstrate the increase of the dynamic range of the sensor by applying this technique.
Resumo:
The need to move forward in the knowledge of the subatomic world has stimulated the development of new particle colliders. However, the objectives of the next generation of colliders sets unprecedented challenges to the detector performance. The purpose of this contribution is to present a bidimensional array based on avalanche photodiodes operated in the Geiger mode to track high energy particles in future linear colliders. The bidimensional array can function in a gated mode to reduce the probability to detect noise counts interfering with real events. Low reverse overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process presents an increased efficiency and avoids sensor blindness by applying the proposed techniques.
Resumo:
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35µm standard technology is also presented in this article.