846 resultados para GENERAL-THEORY
Resumo:
This paper introduces a characterization of the so-called most general temporal constraint (GTC), which guarantees the common-sense assertion that "the beginning of the effect cannot precede the beginning of the cause". The formalism is based on general time theory which takes both points and intervals as primitive. It is shown that there are in fact 8 possible causal relationships which satisfy GTC, including cases where, on the one hand, effects start simultaneously with, during, immediately after, or some time after their causes, and on the other hand, events end before, simultaneously with, or after their causes. These causal relationships are versatile enough to subsume those representatives in the literature.
Resumo:
C.G. Jung and Literary Theory remedies a significant omission in literary studies by doing for Jung and poststructuralist literary theories what has been done extensively for Freud, Lacan and post-Freudian psychoanalysis. This work represents a complete departure from traditional Jungian literary criticism. Instead, radically new Jungian literary theories are developed of deconstruction, feminist theory, gender and psyche, the body and sexuality, spirituality, postcolonialism, historicism and reader-response. As well as linking Jung to the work of Derrida, Kristeva and Irigaray, the book traces contentious occult, cultural and political narratives in Jung's career. It contains a chapter on Jung and fascism in a literary context. [From the Publisher]
Resumo:
Since 1984 David Kolb’s Experiential Learning Theory (ELT) has been a leading influence in the development of learner-centred pedagogy in management and business. It forms the basis of Kolb’s own Learning Styles’ Inventory and those of other authors including Honey and Mumford (2000). It also provides powerful underpinning for the emphasis, nay insistence, on reflection as a way of learning and the use of reflective practice in the preparation of students for business and management and other professions. In this paper, we confirm that Kolb’s ELT is still the most commonly cited source used in relation to reflective practice. Kolb himself continues to propound its relevance to teaching and learning in general. However, we also review some of the criticisms that ELT has attracted over the years and advance new criticisms that challenge its relevance to higher education and its validity as a model for formal, intentional learning.
Resumo:
Prediction of tandem mass spectrometric (MS/MS) fragmentation for non-peptidic molecules based on structure is of immense interest to the mass spectrometrist. If a reliable approach to MS/MS prediction could be achieved its impact within the pharmaceutical industry could be immense. Many publications have stressed that the fragmentation of a molecular ion or protonated molecule is a complex process that depends on many parameters, making prediction difficult. Commercial prediction software relies on a collection of general heuristic rules of fragmentation, which involve cleaving every bond in the structure to produce a list of 'expected' masses which can be compared with the experimental data. These approaches do not take into account the thermodynamic or molecular orbital effects that impact on the molecule at the point of protonation which could influence the potential sites of bond cleavage based on the structural motif. A series of compounds have been studied by examining the experimentally derived high-resolution MS/MS data and comparing it with the in silico modelling of the neutral and protonated structures. The effect that protonation at specific sites can have on the bond lengths has also been determined. We have calculated the thermodynamically most stable protonated species and have observed how that information can help predict the cleavage site for that ion. The data have shown that this use of in silico techniques could be a possible way to predict MS/MS spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Economic analysis of technology treats it as given exogenously, while determined endogenously. This paper examines the conceptual conflict. The paper outlines an alternative conceptual framework. This uses a 'General Vertical Division of Labour' into conceptual and executive parts to facilitate a coherent political economic explanation of technological change. The paper suggests that we may acquire rather than impose an understanding of technological change. It also suggests that we may re-define and reassess the efficiency of technological change, through the values inculcated into it.
Resumo:
This paper explores the law of accidental mixtures of goods. It traces the development of the English rules on mixture from the seminal nineteenth century case of Spence v Union Marine Insurance Co to the present day, and compares their responses to those given by the Roman law, which always has been claimed as an influence on our jurisprudence in this area. It is argued that the different answers given by English and Roman law to essentially the same problems of title result from the differing bases of these legal systems. Roman a priori theory is contrasted with the more practical reasoning of the common law, and while both sets of rules are judged to be coherent on their own terms, it is suggested that the difference between them is reflective of a more general philosophical disagreement about the proper functioning of a legal system, and the relative importance of theoretical and pragmatic considerations.
Resumo:
Employing Bak’s dimension theory, we investigate the nonstable quadratic K-group K1,2n(A, ) = G2n(A, )/E2n(A, ), n 3, where G2n(A, ) denotes the general quadratic group of rank n over a form ring (A, ) and E2n(A, ) its elementary subgroup. Considering form rings as a category with dimension in the sense of Bak, we obtain a dimension filtration G2n(A, ) G2n0(A, ) G2n1(A, ) E2n(A, ) of the general quadratic group G2n(A, ) such that G2n(A, )/G2n0(A, ) is Abelian, G2n0(A, ) G2n1(A, ) is a descending central series, and G2nd(A)(A, ) = E2n(A, ) whenever d(A) = (Bass–Serre dimension of A) is finite. In particular K1,2n(A, ) is solvable when d(A) <.
Resumo:
The solvent effect on reactions in solutions is crucial for many systems. In this study, the reaction barrier with respect to the number of solvent molecules included in the system is systematically studied using density function theory calculations. Our results show that the barriers rapidly converge with respect to the number of solvent molecules. The solvent effect is investigated by calculating cisplatin hydrolysis in several types of solvents. The results are analyzed and a linear relationship between the reaction barrier and the interaction strength of solvent-reactants is found. Insight into the general solvent effect is obtained. (c) 2006 American Institute of Physics.
Resumo:
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.
Resumo:
This article reviews the accumulated theoretical results, in particular density functional theory calculations, on two catalytic processes, CO oxidation and NO reduction on metal surfaces. Owing to their importance in automotive emission control, these two reactions have generated a lot of interest in the last 20 years. Here the pathways and energetics of the involved elementary reactions under different catalytic conditions are described in detail and the understanding of the reactions is generalized. It is concluded that density functional theory calculations can be applied to catalysis to elucidate mechanisms of complex surface reactions and to understand the electronic structure of chemical processes in general. The achieved molecular knowledge of chemical reactions is certainly beneficial to new catalyst design.
Resumo:
Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N-2+3H(2)-->2NH(3)). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H-->NH, NH+H-->NH2 and NH2+H-->NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H-->CH and O+H-->OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors. (C) 2003 American Institute of Physics.
Resumo:
A catalyst preparation by design is one of the ultimate goals in chemistry. The first step towards this goal is to understand the origin of reaction barriers. In this study, we have investigated several catalytic reactions on some transition metal surfaces, using density functional theory. All the reaction barriers have been determined. By detailed analyses we obtain some insight into the reaction barrier. Each barrier is related to (i) the potential energy surface of reactants on the surface, (ii) the total chemisorption energy of reactants, and (iii) the metal d orbital occupancy and the reactant valency. (C) 2001 American Institute of Physics.
Resumo:
Dissociative adsorption is one of the most important reactions in catalysis. In this communication we propose a model aiming to generalize the important factors that affect dissociation reactions. Specifically, for a dissociation reaction, say AB -->A + B, the model connects the dissociation barrier with the association barrier, the chemisorption energies of A and B at the final state and the bonding energy of AB in the gas phase. To apply this model, we have calculated CO dissociation on Ru(0001), Rh(111), Pd(111) (4d transition metals), Os(0001), Ir(111), and Pt(111) (5d transition metals) using density function theory (DFT). All the barriers are determined. We find that the DFT results can be rationalized within the model. The model can also be used to explain many experimental observations. (C) 2001 American Institute of Physics.
Resumo:
Several studies have reported imitative deficits in autism spectrum disorder (ASD). However, it is still debated if imitative deficits are specific to ASD or shared with clinical groups with similar mental impairment and motor difficulties. We investigated whether imitative tasks can be used to discriminate ASD children from typically developing children (TD) and children with general developmental delay (GDD). We applied discriminant function analyses to the performance of these groups on three imitation tasks and tests of dexterity, motor planning, verbal skills, theory of mind (ToM). Analyses revealed two significant dimensions. The first represented impairment of dexterity and verbal ability, and discriminated TD from GDD children. Once these differences were accounted for, differences in ToM and the three imitation tasks accounted for a significant proportion of the remaining intergroup variance and discriminated the ASD group from other groups. Further analyses revealed that inclusion of imitative tasks increased the specificity and sensitivity of ASD classification and that imitative tasks considered alone were able to reliably discriminate ASD, TD and GDD. The results suggest that imitation and theory of mind impairment in autism may stem from a common domain of origin separate from general cognitive and motor skill.