Dimension theory and nonstable K1 of quadratic modules
Data(s) |
01/12/2002
|
---|---|
Resumo |
Employing Bak’s dimension theory, we investigate the nonstable quadratic K-group K1,2n(A, ) = G2n(A, )/E2n(A, ), n 3, where G2n(A, ) denotes the general quadratic group of rank n over a form ring (A, ) and E2n(A, ) its elementary subgroup. Considering form rings as a category with dimension in the sense of Bak, we obtain a dimension filtration G2n(A, ) G2n0(A, ) G2n1(A, ) E2n(A, ) of the general quadratic group G2n(A, ) such that G2n(A, )/G2n0(A, ) is Abelian, G2n0(A, ) G2n1(A, ) is a descending central series, and G2nd(A)(A, ) = E2n(A, ) whenever d(A) = (Bass–Serre dimension of A) is finite. In particular K1,2n(A, ) is solvable when d(A) <. |
Identificador |
http://dx.doi.org/10.1023/A:1022623004336 http://www.scopus.com/inward/record.url?scp=3543033998&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Hazrat , R 2002 , ' Dimension theory and nonstable K1 of quadratic modules ' K-Theory , vol 27(4) , no. 4 , pp. 293-328 . DOI: 10.1023/A:1022623004336 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600 #Mathematics(all) |
Tipo |
article |