999 resultados para Functional orthodontic appliances
Resumo:
Autoimmune diseases are a major health problem. Usually autoimmune disorders are multifactorial and their pathogenesis involves a combination of predisposing variations in the genome and other factors such as environmental triggers. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare, recessively inherited, autoimmune disease caused by mutations in a single gene. Patients with APECED suffer from several organ-specific autoimmune disorders, often affecting the endocrine glands. The defective gene, AIRE, codes for a transcriptional regulator. The AIRE (autoimmune regulator) protein controls the expression of hundreds of genes, representing a substantial subset of tissue-specific antigens which are presented to developing T cells in the thymus and has proven to be a key molecule in the establishment of immunological tolerance. However, the molecular mechanisms by which AIRE mediates its functions are still largely obscure. The aim of this thesis has been to elucidate the functions of AIRE by studying the molecular interactions it is involved in by utilizing different cultured cell models. A potential molecular mechanism for exceptional, dominant, inheritance of APECED in one family, carrying a glycine 228 to tryptophan (G228W) mutation, was described in this thesis. It was shown that the AIRE polypeptide with G228W mutation has a dominant negative effect by binding the wild type AIRE and inhibiting its transactivation capacity in vitro. The data also emphasizes the importance of homomultimerization of AIRE in vivo. Furthermore, two novel protein families interacting with AIRE were identified. The importin alpha molecules regulate the nuclear import of AIRE by binding to the nuclear localization signal of AIRE, delineated as a classical monopartite signal sequence. The interaction of AIRE with PIAS E3 SUMO ligases, indicates a link to the sumoylation pathway, which plays an important role in the regulation of nuclear architecture. It was shown that AIRE is not a target for SUMO modification but enhances the localization of SUMO1 and PIAS1 proteins to nuclear bodies. Additional support for the suggestion that AIRE would preferably up-regulate genes with tissue-specific expression pattern and down-regulate housekeeping genes was obtained from transactivation studies performed with two models: human insulin and cystatin B promoters. Furthermore, AIRE and PIAS activate the insulin promoter concurrently in a transactivation assay, indicating that their interaction is biologically relevant. Identification of novel interaction partners for AIRE provides us information about the molecular pathways involved in the establishment of immunological tolerance and deepens our understanding of the role played by AIRE not only in APECED but possibly also in several other autoimmune diseases.
Resumo:
Introduction Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Methods Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. Results There was no significant difference in HLAclass I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Discussion Large differences were not seen in HLAB27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
Mismatch repair (MMR) mechanisms repair DNA damage occurring during replication and recombination. To date, five human MMR genes, MSH2, MHS6, MSH3, MLH1 and PMS2 are known to be involved in the MMR function. Human MMR proteins form 3 different heterodimers: MutSα (MSH2 and MSH6) and MutSβ (MSH2 and MSH3), which are needed for mismatch recognition and binding, and MutLα (MLH1 and PMS2), which is needed for mediating interactions between MutS homologues and other MMR proteins. The other two MutL homologues, MLH3 and PMS1, have been shown to heterodimerize with MLH1. However, the heterodimers MutLγ (MLH1and MLH3) and MutLβ (MLH1 and PMS1) are able to correct mismatches only with low or no efficiency, respectively. A deficient MMR mechanism is associated with the hereditary colorectal cancer syndrome called hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. HNPCC is the most common hereditary colorectal cancer syndrome and accounts for 2-5% of all colorectal cancer cases. HNPCC-associated mutations have been found in 5 MMR genes: MLH1, MSH2, MSH6, PMS2 and MLH3. Most of the mutations have been found in MLH1 and MSH2 (~90%) and are associated with typical HNPCC, while mutations in MSH6, PMS2 and MLH3 are mainly linked to putative HNPCC families lacking the characteristics of the syndrome. More data of MLH3 mutations are needed to assess the significance of its mutations in HNPCC. In this study, were functionally characterized 51 nontruncating mutations in the MLH1, MLH3 and MSH2 genes to address their pathogenic significance and mechanism of pathogenicity. Of the 36 MLH1 mutations, 22 were deficient in more than one assay, 2 variants were impaired only in one assay, and 12 variants behaved like the wild type protein, whereas all seven MLH3 mutants functioned like the wild type protein in the assays. To further clarify the role and relevance of MLH3 in MMR, we analyzed the subcellular localization of the native MutL homologue proteins. Our immunofluorescence analyses indicated that when all the three MutL homologues are natively expressed in human cells, endogenous MLH1 and PMS2 localize in the nucleus, whereas MLH3 stays in the cytoplasm. The coexpression of MLH3 with MLH1 results in its partial nuclear localization. Only one MSH2 mutation was pathogenic in the in vitro MMR assay. Our study on MLH1 mutations could clearly distinguish nontruncating alterations with severe functional defects from those not or only slightly impaired in protein function. However, our study on MLH3 mutations suggest that MLH3 mutations per se are not sufficient to trigger MMR deficiency and the continuous nuclear localization of MLH1 and PMS2 suggest that MutLα has a major activity in MMR in vivo. Together with our functional assays, this confirms that MutLγ is a less efficient MMR complex than MutLα.
Resumo:
The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.
Resumo:
The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized.
Resumo:
This study is one part of a collaborative depression research project, the Vantaa Depression Study (VDS), involving the Department of Mental and Alcohol Research of the National Public Health Institute, Helsinki, and the Department of Psychiatry of the Peijas Medical Care District (PMCD), Vantaa, Finland. The VDS includes two parts, a record-based study consisting of 803 patients, and a prospective, naturalistic cohort study of 269 patients. Both studies include secondary-level care psychiatric out- and inpatients with a new episode of major depressive disorder (MDD). Data for the record-based part of the study came from a computerised patient database incorporating all outpatient visits as well as treatment periods at the inpatient unit. We included all patients aged 20 to 59 years old who had been assigned a clinical diagnosis of depressive episode or recurrent depressive disorder according to the International Classification of Diseases, 10th edition (ICD-10) criteria and who had at least one outpatient visit or day as an inpatient in the PMCD during the study period January 1, 1996, to December 31, 1996. All those with an earlier diagnosis of schizophrenia, other non-affective psychosis, or bipolar disorder were excluded. Patients treated in the somatic departments of Peijas Hospital and those who had consulted but not received treatment from the psychiatric consultation services were excluded. The study sample comprised 290 male and 513 female patients. All their psychiatric records were reviewed and each patient completed a structured form with 57 items. The treatment provided was reviewed up to the end of the depression episode or to the end of 1997. Most (84%) of the patients received antidepressants, including a minority (11%) on treatment with clearly subtherapeutic low doses. During the treatment period the depressed patients investigated averaged only a few visits to psychiatrists (median two visits), but more to other health professionals (median seven). One-fifth of both genders were inpatients, with a mean of nearly two inpatient treatment periods during the overall treatment period investigated. The median length of a hospital stay was 2 weeks. Use of antidepressants was quite conservative: The first antidepressant had been switched to another compound in only about one-fifth (22%) of patients, and only two patients had received up to five antidepressant trials. Only 7% of those prescribed any antidepressant received two antidepressants simultaneously. None of the patients was prescribed any other augmentation medication. Refusing antidepressant treatment was the most common explanation for receiving no antidepressants. During the treatment period, 19% of those not already receiving a disability pension were granted one due to psychiatric illness. These patients were nearly nine years older than those not pensioned. They were also more severely ill, made significantly more visits to professionals and received significantly more concomitant medications (hypnotics, anxiolytics, and neuroleptics) than did those receiving no pension. In the prospective part of the VDS, 806 adult patients were screened (aged 20-59 years) in the PMCD for a possible new episode of DSM-IV MDD. Of these, 542 patients were interviewed face-to-face with the WHO Schedules for Clinical Assessment in Neuropsychiatry (SCAN), Version 2.0. Exclusion criteria were the same as in the record-based part of the VDS. Of these, 542 269 patients fulfiled the criteria of DSM-IV MDE. This study investigated factors associated with patients' functional disability, social adjustment, and work disability (being on sick-leave or being granted a disability pension). In the beginning of the treatment the most important single factor associated with overall social and functional disability was found to be severity of depression, but older age and personality disorders also significantly contributed. Total duration and severity of depression, phobic disorders, alcoholism, and personality disorders all independently contributed to poor social adjustment. Of those who were employed, almost half (43%) were on sick-leave. Besides severity and number of episodes of depression, female gender and age over 50 years strongly and independently predicted being on sick-leave. Factors influencing social and occupational disability and social adjustment among patients with MDD were studied prospectively during an 18-month follow-up period. Patients' functional disability and social adjustment were alleviated during the follow-up concurrently with recovery from depression. The current level of functioning and social adjustment of a patient with depression was predicted by severity of depression, recurrence before baseline and during follow-up, lack of full remission, and time spent depressed. Comorbid psychiatric disorders, personality traits (neuroticism), and perceived social support also had a significant influence. During the 18-month follow-up period, of the 269, 13 (5%) patients switched to bipolar disorder, and 58 (20%) dropped out. Of the 198, 186 (94%) patients were at baseline not pensioned, and they were investigated. Of them, 21 were granted a disability pension during the follow-up. Those who received a pension were significantly older, more seldom had vocational education, and were more often on sick-leave than those not pensioned, but did not differ with regard to any other sociodemographic or clinical factors. Patients with MDD received mostly adequate antidepressant treatment, but problems existed in treatment intensity and monitoring. It is challenging to find those at greatest risk for disability and to provide them adequate and efficacious treatment. This includes great challenges to the whole society to provide sufficient resources.
Resumo:
Visual information processing in brain proceeds in both serial and parallel fashion throughout various functionally distinct hierarchically organised cortical areas. Feedforward signals from retina and hierarchically lower cortical levels are the major activators of visual neurons, but top-down and feedback signals from higher level cortical areas have a modulating effect on neural processing. My work concentrates on visual encoding in hierarchically low level cortical visual areas in human brain and examines neural processing especially in cortical representation of visual field periphery. I use magnetoencephalography and functional magnetic resonance imaging to measure neuromagnetic and hemodynamic responses during visual stimulation and oculomotor and cognitive tasks from healthy volunteers. My thesis comprises six publications. Visual cortex forms a great challenge for modeling of neuromagnetic sources. My work shows that a priori information of source locations are needed for modeling of neuromagnetic sources in visual cortex. In addition, my work examines other potential confounding factors in vision studies such as light scatter inside the eye which may result in erroneous responses in cortex outside the representation of stimulated region, and eye movements and attention. I mapped cortical representations of peripheral visual field and identified a putative human homologue of functional area V6 of the macaque in the posterior bank of parieto-occipital sulcus. My work shows that human V6 activates during eye-movements and that it responds to visual motion at short latencies. These findings suggest that human V6, like its monkey homologue, is related to fast processing of visual stimuli and visually guided movements. I demonstrate that peripheral vision is functionally related to eye-movements and connected to rapid stream of functional areas that process visual motion. In addition, my work shows two different forms of top-down modulation of neural processing in the hierachically lowest cortical levels; one that is related to dorsal stream activation and may reflect motor processing or resetting signals that prepare visual cortex for change in the environment and another local signal enhancement at the attended region that reflects local feed-back signal and may perceptionally increase the stimulus saliency.
Resumo:
Oral cancer ranks among the 10 most common cancers worldwide. Since it is commonly diagnosed at locally advanced stage, curing the cancer demands extensive tissue resection. The emergent defect is reconstructed generally with a free flap transfer. Repair of the upper aerodigestive track with maintenance of its multiform activities is challenging. The aim of the study was to extract comprehensive treatment outcomes for patients having undergone microvascular free flap transfer because of large oral cavity or pharyngeal cancer. Ninety-four patients were analyzed for postoperative survival and complications. Forty-four patients were followed-up and analyzed for functional outcome, which was determined in terms of quality of life, speech, swallowing, and intraoral sensation. Quality of life was assessed using the University of Washington Head and Neck Questionnaire. Speech was analyzed for aerodynamic parameters and for nasal acoustic energy, as well as perceptually for articulatory proficiency, voice quality, and intelligibility. Videofluorography was performed to determine the swallowing ability. Intraoral sensation was measured by moving 2-point discrimination. The 3-year overall survival was over 40%. The 1-year disease-free survival was 43%. Postoperative complications arose in over half of the patients. Flap success rate was high. Perioperative mortality varied between 2% and 11%. Unemployment and heavy drinking were the strongest predictors of survival. Sociodemographic factors were found to associate with quality of life. The global quality of life score deteriorated and did not return to the preoperative level. Significant reduction was detectable in the domains measuring chewing and speech, and in appearance and shoulder function. The basic elements necessary for normal speech were maintained. Speech intelligibility reduced and was related to the misarticulations of the /r/ and /s/ phonemes. Deviant /r/ and /s/ persisted in most patients. Hoarseness and hypernasality occurred infrequently. One year postoperatively, 98% of the patients had achieved oral nutrition and half of them were on a regular masticated diet. Overt and silent aspiration was encountered throughout the follow-up. At 12-month swallow test, 44% of the patients aspirated, 70% of whom silently. Of these patients, 15% presented with pulmonary changes referring to aspiration. Intraoral sensation weakened but was unrelated to oral functions. The results provide new data for oral reconstructions and highlight the importance of the functional outcome of the treatment for an oral cancer patient. The mouth and the pharynx encompass a unit of utmost functional complexity. Surgery should continue to make progress in this area, and methods that lead to good function should be developed. Operational outcome should always be evaluated in terms of function.
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.