726 resultados para Finite Deformation
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.
Resumo:
Työn tavoitteena oli tuottaa rakenteellisen jouston huomioiva monikappaledynmiikan simulointiohjelma Matlab-ympäristöön. Rakenteellinen jousto huomioitiin kelluvan koordinaatiston menetelmällä ja joustavuutta kuvaavat muodot ratkaistiin elementtimenetelmällä. Tehdyn ohjelman avulla voidaan koostaa joustavista kappaleista koostuvia avaruusmekanismeja ja tutkia niiden dynaamista käyttäytymistä. Simulointitulosta verrattiin kaupallisen ohjelmiston tuottamaan tulokseen. Työssä havaittiin, että kelluvan koordinaatiston menetelmä on käyttökelpoinen reaaliaikaiseen simulointiin. Työssä toteutetun ohjelman tulokset vastasivat kaupallisen simulointiohjelman tuloksia.
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.
Resumo:
In this paper, a new two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the beam element are obtained using a continuum mechanics approach without employing a local element coordinate system. In this study, linear polynomials are used to interpolate both the transverse and longitudinal components of the displacement. This is different from other absolute nodal-coordinate-based beam elements where cubic polynomials are used in the longitudinal direction. The accompanying defects of the phenomenon known as shear locking are avoided through the adoption of selective integration within the numerical integration method. The proposed element is verified using several numerical examples, and the results are compared to analytical solutions and the results for an existing shear deformable beam element. It is shown that by using the proposed element, accurate linear and nonlinear static deformations, as well as realistic dynamic behavior, can be achieved with a smaller computational effort than by using existing shear deformable two-dimensional beam elements.
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
The building industry has a particular interest in using clinching as a joining method for frame constructions of light-frame housing. Normally many clinch joints are required in joining of frames.In order to maximise the strength of the complete assembly, each clinch joint must be as sound as possible. Experimental testing is the main means of optimising a particular clinch joint. This includes shear strength testing and visual observation of joint cross-sections. The manufacturers of clinching equipment normally perform such experimental trials. Finite element analysis can also be used to optimise the tool geometry and the process parameter, X, which represents the thickness of the base of the joint. However, such procedures require dedicated software, a skilled operator, and test specimens in order to verify the finite element model. In addition, when using current technology several hours' computing time may be necessary. The objective of the study was to develop a simple calculation procedure for rapidly establishing an optimum value for the parameter X for a given tool combination. It should be possible to use the procedure on a daily basis, without stringent demands on the skill of the operator or the equipment. It is also desirable that the procedure would significantly decrease thenumber of shear strength tests required for verification. The experimental workinvolved tests in order to obtain an understanding of the behaviour of the sheets during clinching. The most notable observation concerned the stage of the process in which the upper sheet was initially bent, after which the deformation mechanism changed to shearing and elongation. The amount of deformation was measured relative to the original location of the upper sheet, and characterised as the C-measure. By understanding in detail the behaviour of the upper sheet, it waspossible to estimate a bending line function for the surface of the upper sheet. A procedure was developed, which makes it possible to estimate the process parameter X for each tool combination with a fixed die. The procedure is based on equating the volume of material on the punch side with the volume of the die. Detailed information concerning the behaviour of material on the punch side is required, assuming that the volume of die does not change during the process. The procedure was applied to shear strength testing of a sample material. The sample material was continuously hot-dip zinc-coated high-strength constructional steel,with a nominal thickness of 1.0 mm. The minimum Rp0.2 proof stress was 637 N/mm2. Such material has not yet been used extensively in light-frame housing, and little has been published on clinching of the material. The performance of the material is therefore of particular interest. Companies that use clinching on a daily basis stand to gain the greatest benefit from the procedure. By understanding the behaviour of sheets in different cases, it is possible to use data at an early stage for adjusting and optimising the process. In particular, the functionality of common tools can be increased since it is possible to characterise the complete range of existing tools. The study increases and broadens the amount ofbasic information concerning the clinching process. New approaches and points of view are presented and used for generating new knowledge.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
Belt-drive systems have been and still are the most commonly used power transmission form in various applications of different scale and use. The peculiar features of the dynamics of the belt-drives include highly nonlinear deformation,large rigid body motion, a dynamical contact through a dry friction interface between the belt and pulleys with sticking and slipping zones, cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The life of the belt-drive is critically related on these features, and therefore, amodel which can be used to study the correlations between the initial values and the responses of the belt-drives is a valuable source of information for the development process of the belt-drives. Traditionally, the finite element models of the belt-drives consist of a large number of elements thatmay lead to computational inefficiency. In this research, the beneficial features of the absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to fulfill the following requirements for the successful and efficient analysis of the belt-drive systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the consideration of theeffect of the shear deformation, the exact description of the highly nonlinear deformations and a simple and realistic description of the contact. The use of distributed contact forces and high order beam and plate elements based on the absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives can be obtained with a significantly smaller number of elements and degrees of freedom in comparison to the previously published finite element models of belt-drives. The results of theexamples demonstrate the functionality and suitability of the absolute nodal coordinate formulation for the computationally efficient and realistic modeling ofbelt-drives. This study also introduces an approach to avoid the problems related to the use of the continuum mechanics approach in the definition of elastic forces on the absolute nodal coordinate formulation. This approach is applied to a new computationally efficient two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. The proposed beam element uses a linear displacement field neglecting higher-order terms and a reduced number of nodal coordinates, which leads to fewer degrees of freedom in a finite element.
Resumo:
This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous driving of the horizontal plate at the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height and rotational speed of the shearing plate are measured. Moreover, local stress fluctuations are measured in a medium made of steel spheres 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity in intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of spherical steel balls. The shearing granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus using a piezoelectric sensor. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations are then investigated by different means through monodisperse and bidisperse packings. Another important feature of rapid granular shear flows is the formation of ordered structures upon shearing. It requires a certain range for the amount of granular material (uniform size distribution) loaded in the system in order to obtain stable flows. This is studied more deeply in this thesis. The results of the current work bring some new insights into deformation dynamics and intermittency in rapid granular shear flows. The experimental apparatus is modified in comparison to earlier investigations. The measurements produce data for various quantities continuously sampled from the start of shearing to the end. Static failure and dynamic shearing ofa granular medium is investigated. The results of this work revealed some important features of failure dynamics and structure formation in the system. Furthermore, some computer simulations are performed in a 2D annulus to examine the nature of kinetic energy dissipation. It is found that turbulent flow models can statistically represent rapid granular flows with high accuracy. In addition to academic outcomes and scientific publications our results have a number of technological applications associated with grinding, mining and massive grain storages.
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
Työn tavoitteena oli kehittää nopeasti konvergoiva kuorielementti epälineaarisesti joustavien kappaleiden analysointiin. Kuorielementti perustuu absoluuttisten solmukoordinaattien menetelmään ja se hyödyntää kaarevuuden kuvausta elastisten voimien määrityksessä. Kehitettyä elementtiä verrattiin kontinuumimekaniikalla kehitettyyn kuorielementtiin ja kaupallisen elementtimenetelmän kuorielementtiin. Yksinkertaisimman kuormitustapauksen tuloksia verrattiin teknisen taivutusteorian mukaiseen analyyttiseen ratkaisuun. Staattisten testien tulokset tässä työssä kehitetyllä kuorielementillä vastasivat hyvin kaupallisella elementtimenetelmällä saatuja tuloksia. Deformaatioiden ollessa geometrisesti lineaarisella alueella, kehitetyllä kuorielementillä saadut tulokset vastasivat paremmin sekä analyyttistä ratkaisua että kaupallisella elementtimenetelmällä saatuja tuloksia kuin aiemman kontinuumimekaniikkaan perustuvan kuorielementin tulokset. Kehitetyn kuorielementin ongelmana verrattuna kontinuumimekaniikkaan perustuvaan elementtiin on monimutkaisempi kinematiikan kuvaus. Tästä on seurauksena laskenta-ajan huomattava kasvaminen. Jatkossa kannattaisi keskittyä numeeristen ratkaisumenetelmien kehittämiseen.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.