954 resultados para Electron Microscope
Resumo:
Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and δmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the δmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type. © 2012 Wiley Periodicals, Inc.
Resumo:
In-situ deformation experiments were carried out in a transmission electron microscope to investigate the structural response of single crystal GaAs nanowires (NWs) under compression. A repeatable self-healing process was discovered in which a partially fractured GaAs NW restored its original single crystal structure immediately after an external compressive force was removed. Possible mechanisms of the self-healing process are discussed.
Resumo:
The optical and structural properties of binary and ternary III-V nanowires including GaAs, InP, In(Ga)As, Al(Ga)As, and GaAs(Sb) nanowires by metal-organic chemical vapour deposition are investigated, Au colloidal nanoparticles are employed to catalyze nanowire growth. Zinc blende or wurtzite crystal structures with some stacking faults are observed for these nanowires by high resolution transmission electron microscope. In addition, the properties of heterostructure nanowires including GaAs-AlGaAs core-shell nanowires, GaAs-InAs nanowires, and GaAs-GaSb nanowires are reported. Single nanowire luminescence properties from optically bright InP nanowires are reported. Interesting phenomena such as two-temperature procedure, nanowire height enhancement of isolated ternary InGaAs nanowires, kinking effect of InAs-GaAs heterostructure nanowires, and unusual growth property of GaAs-GaSb heterostructure nanowires are investigated. These nanowires will play an essential role in future optoelectronic devices.
Resumo:
P>Semen sample was collected from two captive adult Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) during physical examination. One individual was aged about 9 years with body length 143 cm (total length) and body weight 46.1 kg in 2003. The age of the other was unknown and its body length was 147 cm and body weight was 43 kg in 2004. Ultrastructure of their spermatozoa was examined using scanning and transmission electron microscope. The sperm concentration was 4.17 x 10(9) spermatozoa per ml by the cytometer. The approximate dimensions of the spermatozoa were as follows: head length, 3.366 +/- 0.140 mu m (mean +/- SE, n = 15); head width, 1.896 +/- 0.099 mu m (n = 15); and neck length, 1.004 +/- 0.074 mu m (n = 10). The tail included midpiece, principal piece and terminal piece. The length of the midpiece was 1.882 +/- 0.077 mu m (n = 9). There is no apparent boundary between the principal piece and the terminal piece, so the length of the principal piece and the terminal piece was 44.612 +/- 3.485 mu m (n = 5). Total length of the spermatozoa was 53.314 +/- 4.580 mu m (n = 10). The acrosome covered approximately 45.8% of the anterior portion of the head.
Resumo:
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.
Resumo:
Dicer catalyzes the initiation step of RNA interference (RNAi) which is known to play a significant role in innate immune response to viral infection in many organisms. To study the RNAi-related pathway after virus infection in fish, we identified a partial cDNA sequence of dicer from rare minnow, Gobiocypris rants. Real-time quantitative RT-PCR (qRT-PCR) demonstrated the Dicer transcript level was the highest at zygote stage, decreased at prim-5 stage, and was stable from the protruding mouth to adult stage. Regular RT-PCR analysis showed that the Dicer gene expressed widely in the tested tissues, including brain, gill, heart, intestine, kidney, liver, muscle, ovary, spleen and testis. The expression of Dicer mRNA was significantly increased in the early period of Grass carp reovirus (GCRV) infection, and declined from 24 It post-injection (h p.i.) (P<0.05). The mRNA expression returned to control levels at 48 h p.i. (P>0.05). Under transmission electron microscope, virions were difficulty to find out in 12 h p.i., and virus inclusion bodies and few scattered viral particles were easily visualized from 24 h p.i. to moribund. These results implied GCRV triggered the RNAi pathway in the early stages of infection and perhaps virus inclusion bodies suppressed the antiviral functions of RNAi mechanism. (C) 2009 Published by Elsevier B.V.
Resumo:
Chinese sturgeon Acipenser sinensis, a cartilaginous ganoid, is a 'living fossil' on a deeply isolated evolutionary branch. A cell line was established from Chinese sturgeon tail-fin tissue (CSTF) . These epithelial CSTF cells grew well in Dulbecco's modified Eagle's medium at 25 degrees C. Karyotypic analysis revealed a normal diploid karyotype with 2n = 264 and large numbers of punctate chromosomes. A strain of frog iridoviruses [Rana grylio virus (RGV)] was used to test the susceptibility of this cell line to infection. Infection was confirmed by cytopathic effect, immunofluorescence and electron-microscope observations, which detected the viral antigens or particles in the cytoplasm of RGV-infected cells. Molecular analysis further suggested that c. 550 bp DNA fragment could be cloned from the RGV-infected CSTF cells' DNA with major capsid protein gene polymerase chain reaction primers. Furthermore, after transfection with pEGFP vector DNA, the CSTF cell line produced significant fluorescent signals indicating its utility in exogenous studies.
Resumo:
Many experimental studies have documented the impact of microcystins (MC) on fish based on either intraperitoneal injection, or oral gavaging via the diet, but few experiments were conducted by MC exposure through natural food uptake in lakes. In this study, the phytoplanktivorous silver carp were stocked in a large pen set in Meiliang Bay of Taihu Lake where toxic Microcystis blooms occurred in the warm seasons. Fish samples were collected monthly and MC concentrations in liver and kidney of the fish were determined by LC-MS. The maximum MC concentrations in liver and kidney were present in July when damages in ultrastructures of the liver and kidney were revealed by electron microscope. In comparison with previous studies on common carp, silver carp showed less damage and presence of lysosome proliferation in liver and kidney. Silver carp might eliminate or lessen cell damage caused by MC through lysosome activation. Recovery in the ultrastructures of liver and kidney after Microcystis blooms was companied with a significant decrease or even disappearance of MC. Catalase and glutathione S-transferase in liver and kidney of silver carp during Microcystis blooms were significantly higher than before and after Microcystis blooms. The high glutathione pool in liver and kidney of silver carp suggests their high resistance to MC exposure. The efficient antioxidant defence may be an important mechanism of phytoplanktivorous fish like silver carp to counteract toxic Microcystis blooms. (C) 2007 Published by Elsevier Ltd.
Resumo:
A phytoplankton-lytic (PL) bacterium, Bacillus cereus, capable of lysing the bloom-forming cyanobacterium. Aphanizomenon flos-aquae was isolated from Lake Dianchi of Yunnan province, China. This bacterium showed lytic activities against a wide range of cyanobacteria/algae, including A. flos-aquae, Microcystis viridis, Microcystis wesenbergi, Microcystis aeruginosa, Chlorella ellipsoidea, Oscillatoria tenuis, Nostoc punctiforme, Anabaena flos-aquae, Spirulina maxima, and Selenastrum capricornutum. Chlorophyll a contents, phycocyanin contents, and photosynthetic activities of the A. flos-aquae decreased evidently in an infected culture for a period. Bacterium B. cereus attacked rapidly A. flos-aquae cells by cell-to-cell contact mechanism. It was shown that the lysis of A. flos-aquae began with the breach of the cyanobacterial cell wall, and the cyanobacterial cell appeared abnormal in the presence of the PL bacterium. Moreover, transmission electron microscope examinations revealed that a close contact between the bacterium and the cyanobacterium was necessary for lysis. Some slime extrusions produced from B. cereus assisted the bacterial cells to be in close association with and lyse the cyanobacterial cells. These findings suggested that this bacterium could play an important role in controlling the Aphanizomenon blooms in freshwaters. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The spatial distribution and morphological diversity of virioplankton were determined in Lake Donghu which contains three trophic regions: hypertrophic, eutrophic and mesotrophic region. Virioplankton abundance measured by transmission electron microscope (TEM) ranged from 7.7 x 10(8) to 3.0 x 109 ml(-1), being among the highest observed in any natural aquatic system examined so far. The spatial distribution of virioplankton was correlated significantly with chlorophyll a concentration (r = 0.847; P < 0.01) at the sampling sites in Lake Donghu. 76 morphotypes were observed. Most morphotypes have tails, belonging to Siphoviridae, Myoviridae and Podoviridae. The majority of tailed phages in the lake were Myoviridae. Morphotypes which were rarely reported, such as prolate-headed virus-like particles, lemon-shaped virus-like particle, and viruses resembling Tectiviridae and Corticoviridae were all observed in the lake. It is concluded that the high viral abundance might be associated with high density of phytoplankton including algae and cyanobacteria. There was high viral diversity in this eutrophic shallow lake. In addition, cyanophage represented an important fraction of the virioplankton community in Lake Donghu. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
Lake Donghu is a typical eutrophic freshwater lake in which high abundance of planktonic viruses was recently revealed. In this study, seasonal variation of planktonic viruses were observed at three different trophic sites, hypertrophic, eutrophic, and mesotrophic regions, and the correlation between their abundances and other aquatic environmental components, such as bacterioplankton, chlorophyll a, burst size, pH, dissolved oxygen, and temperature, was analyzed for the period of an year. Virioplankton abundance detected by transmission electron microscope (TEM) ranged from 5.48 x 10(8) to 2.04 x 10(9) ml(-1) in all the sites throughout the study, and the high abundances and seasonal variations of planktonic viruses were related to the trophic status at the sampled sites in Lake Donghu. Their annual mean abundances were, the highest at the hypertrophic site (1.23x10(9) ml(-1)), medium at the eutrophic site (1.19x10(9) ml(-1)), and the lowest at the mesotrophic site (1.02x10(9) ml(-1)). The VBR (virus-to-bacteria ratio) values were high, ranging from 49 to 56 on average at the three sampled sites. The data suggested that the high viral abundance and high VBR values might be associated with high density of phytoplankton including algae and cyanobacteria in this eutrophic shallow lake, and that planktonic viruses are important members of freshwater ecosystems.
Resumo:
From 2001 to 2002, a new and emergent infectious disease of Ophiocephalus argus occurred in a fishery in Hubei Province, China, with an incidence of 60% similar to 70% and a mortality as high as 100 %. The diseased fish showed an enlarged abdomen, the millet-like nodules in internal organs, and the swollen kidney which was composed of 5 similar to 10 sarcoma-like bodies in cream or gray-white colour or ulcerated into beandregs-like substance. Light microscopic observation revealed the basophilic or acidphilic inclusions in cytoplasm of the cells and the granulomas, a diffusive chronic inflammation in internal organs. Further analysis under an electron microscope indicated that the intracytoplasmic inclusions were rickettsia-like organisms (RLOs) that are either spherical or coccoid, with variable size, ranging from 0.5 similar to 1.5 mum in diameter, and enclosed within membrane-bound cytoplasmic vacuoles. RLO had a central nucleoid region with some fine filamentous structures and an electron-dense granule. Its cytoplasm contained abundant ribosomal bodies. Occasionally, RLO appeared to be divided by binary fission. RLOs were also observed in the homogenized tissue of infected fish. The results suggested that the death of cultured O. argus was caused by RLO infection.
Resumo:
E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 degrees C for 1 h in O-2 atmosphere. Through proper thermal treatment, the 1.53 mu m Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 degrees C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 10(21) (photons/cm(2)/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 10(22)/cm(3), and it opens a promising way towards future Si-based light source for Si photonics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.
Resumo:
Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 2 theta. locations of ZnO (002) face in the XRD patterns and the E-2(high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.