424 resultados para Eigenvalues.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35A23, 35B51, 35J96, 35P30, 47J20, 52A40.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35S05, 47G30, 58J42.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 05C50.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 × 3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4 × 4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n × n PRM is formulated, the elements aij (i < j) of which were randomly chosen from the ratio scale ... ... with equal probability 1/(2M − 1) and a ji is defined as 1/a ij . By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most experiments in particle physics are scattering experiments, the analysis of which leads to masses, scattering phases, decay widths and other properties of one or multi-particle systems. Until the advent of Lattice Quantum Chromodynamics (LQCD) it was difficult to compare experimental results on low energy hadron-hadron scattering processes to the predictions of QCD, the current theory of strong interactions. The reason being, at low energies the QCD coupling constant becomes large and the perturbation expansion for scattering; amplitudes does not converge. To overcome this, one puts the theory onto a lattice, imposes a momentum cutoff, and computes the integral numerically. For particle masses, predictions of LQCD agree with experiment, but the area of decay widths is largely unexplored. ^ LQCD provides ab initio access to unusual hadrons like exotic mesons that are predicted to contain real gluonic structure. To study decays of these type resonances the energy spectra of a two-particle decay state in a finite volume of dimension L can be related to the associated scattering phase shift δ(k) at momentum k through exact formulae derived by Lüscher. Because the spectra can be computed using numerical Monte Carlo techniques, the scattering phases can thus be determined using Lüscher's formulae, and the corresponding decay widths can be found by fitting Breit-Wigner functions. ^ Results of such a decay width calculation for an exotic hybrid( h) meson (JPC = 1-+) are presented for the decay channel h → πa 1. This calculation employed Lüscher's formulae and an approximation of LQCD called the quenched approximation. Energy spectra for the h and πa1 systems were extracted using eigenvalues of a correlation matrix, and the corresponding scattering phase shifts were determined for a discrete set of πa1 momenta. Although the number of phase shift data points was sparse, fits to a Breit-Wigner model were made, resulting in a decay width of about 60 MeV. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research work aims to make a study of the algebraic theory of matrix monic polynomials, as well as the definitions, concepts and properties with respect to block eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations between the matrix polynomial and the Companion and Vandermonde matrices. We study the construction of matrix polynomials with certain solvents and the extention of the Power Method, to calculate block eigenvalues and solvents of P(X). Through the relationship between the dominant block eigenvalue of the Companion matrix and the dominant solvent of P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the matrix polynomial. We illustrate with numerical examples for diferent cases of convergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis of electronic devices is one of the most important steps for designing of modern devices. Precise thermal analysis is essential for designing an effective thermal management system of modern electronic devices such as batteries, LEDs, microelectronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise thermal analysis, the temperature profile and thermal spreading resistance of the device should be calculated by considering the geometry, property and boundary conditions. Thermal spreading resistance occurs when heat enters through a portion of a surface and flows by conduction. It is the primary source of thermal resistance when heat flows from a tiny heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling the temperature behavior and thermal resistance in some common geometries of microelectronic devices such as heat channels and heat tubes are investigated. Different boundary conditions for the system are considered. Along the source plane, a combination of discretely specified heat flux, specified temperatures and adiabatic condition are studied. Along the walls of the system, adiabatic or convective cooling boundary conditions are assumed. Along the sink plane, convective cooling with constant or variable heat transfer coefficient are considered. Also, the effect of orthotropic properties is discussed. This thesis contains nine chapters. Chapter one is the introduction and shows the concepts of thermal spreading resistance besides the originality and importance of the work. Chapter two reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensional flux channel with non-uniform convection coefficient in the heat sink plane is studied. The non-uniform convection is modeled by using two functions than can simulate a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux channel with different heat transfer coefficient along the right and left edges and sink plane is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of the system are defined using the heat transfer coefficient on both edges and for satisfying the orthogonality condition, a normalized function is calculated. In chapter six, thermal behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions on the source plane is presented. The boundary condition along the source plane can be a combination of the first kind boundary condition (Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann or prescribed heat flux). The proposed solution can be used for modeling the flux channels with numerous different source plane boundary conditions without any limitations in the number and position of heat sources. In chapter seven, temperature profile of a circular flux tube with discretely specified boundary conditions along the source plane is presented. Also, the effect of orthotropic properties are discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform heat convection along the heat sink plane is analytically modeled. In chapter nine, a summary of the achievements is presented and some systems are proposed for the future studies. It is worth mentioning that all the models and case studies in the thesis are compared with the Finite Element Method (FEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For decades scientists have attempted to use ideas of classical mechanics to choose basis functions for calculating spectra. The hope is that a classically-motivated basis set will be small because it covers only the dynamically important part of phase space. One popular idea is to use phase space localized (PSL) basis functions. This thesis improves on previous efforts to use PSL functions and examines the usefulness of these improvements. Because the overlap matrix, in the matrix eigenvalue problem obtained by using PSL functions with the variational method, is not an identity, it is costly to use iterative methods to solve the matrix eigenvalue problem. We show that it is possible to circumvent the orthogonality (overlap) problem and use iterative eigensolvers. We also present an altered method of calculating the matrix elements that improves the performance of the PSL basis functions, and also a new method which more efficiently chooses which PSL functions to include. These improvements are applied to a variety of single well molecules. We conclude that for single minimum molecules, the PSL functions are inferior to other basis functions. However, the ideas developed here can be applied to other types of basis functions, and PSL functions may be useful for multi-well systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this master thesis is to study the exponential decay of solutions of elliptic partial equations. This work is based on the results obtained by Agmon. To this purpose, first, we define the Agmon metric, that plays an important role in the study of exponential decay, because it is related to the rate of decay. Under some assumptions on the growth of the function and on the positivity of the quadratic form associated to the operator, a first result of exponential decay is presented. This result is then applied to show the exponential decay of eigenfunctions with eigenvalues whose real part lies below the bottom of the essential spectrum. Finally, three examples are given: the harmonic oscillator, the hydrogen atom and a Schrödinger operator with purely discrete spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate protocols for generating a state t-design by using a fixed separable initial state and a diagonal-unitary t-design in the computational basis, which is a t-design of an ensemble of diagonal unitary matrices with random phases as their eigenvalues. We first show that a diagonal-unitary t-design generates a O (1/2(N))-approximate state t-design, where N is the number of qubits. We then discuss a way of improving the degree of approximation by exploiting non-diagonal gates after applying a diagonal-unitary t-design. We also show that it is necessary and sufficient to use O (log(2)(t)) -qubit gates with random phases to generate a diagonal-unitary t-design by diagonal quantum circuits, and that each multi-qubit diagonal gate can be replaced by a sequence of multi-qubit controlled-phase-type gates with discrete-valued random phases. Finally, we analyze the number of gates for implementing a diagonal-unitary t-design by non-diagonal two- and one-qubit gates. Our results provide a concrete application of diagonal quantum circuits in quantum informational tasks.