958 resultados para Domain structure
Resumo:
Septins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure. The dearth of structural information concerning the C-terminal region has motivated the present study in which the putative C-terminal domains of human SEPT2, SEPT6 and SEPT7 were expressed in E. coli and purified to homogeneity. The thermal stability and secondary structure content of the domains were studied by circular dichroism spectroscopy, and homo- and hetero-interactions were investigated by size exclusion chromatography, chemical cross-linking, analytical ultracentrifugation and surface plasmon resonance. Our results show that SEPT6-C and SEPT7-C are able to form both homo- and heterodimers with a high alpha-helical content in solution. The heterodimer is elongated and considerably more stable than the homodimers, with a K (D) of 15.8 nM. On the other hand, the homodimer SEPT2-C has a much lower affinity, with a K (D) of 4 mu M, and a moderate alpha-helical content. Our findings present the first direct experimental evidence toward better understanding the biophysical properties and coiled-coil pairings of such domains and their potential role in filament assembly and stability.
Resumo:
The amphipod fauna was employed to investigate a bottom environmental gradient in the continental shelf adjacent to Santos Bay. The constant flow of less saline water from the estuarine complex of the Santos and Sao Vicente rivers besides the seasonal intrusion of the cold saline South Atlantic Central Water (SACW) bring a highly dynamic water regime to the area. Density, distribution, diversity and functional structure of the communities were studied on a depth gradient from 10 to 100 m on two cruises in contrasting seasons, winter 2005 and summer 2006. Twenty-one sediment samples were taken with a 0.09m(2) box corer. Temperature and salinity were measured at each station and an additional surface sediment sample was obtained with the box corer for granulometric and chemical analyses. Sixty species were collected on each survey and higher density values were found in summer. A priori one-way Analysis of Similarities (ANOSIM) indicated the existence of three different groups of amphipods related to the depth gradient: the Coastal group, the Mixed Zone group and the Deep Zone group. The Coastal Zone in both cruises was inhabited by a community presenting low diversity and density, besides high dominance of the infaunal tube-dweller Ampelisca paria; the area around 30 m presented the highest values of all the ecological indicators and the species showed several life styles; the outer area, situated between 50 and 100 m depth in the SACW domain, presented a community characterized by lower diversity and high biomass and density values. A season-depth ANOSIM showed the influence of depth and season for the Coastal and Mixed Zone groups whereas no seasonal difference was obtained for the Deep Zone group. The synergistic effect of the SACW and depth in the first place, followed by physical changes in substrate, seem to be the main factors controlling the fauna's distribution. In addition, the estuarine waters from Santos Bay apparently had no effect on the establishment of the environmental gradient observed on the adjacent shelf. Diversity, distribution, functional groups and trophic conditions of superficial sediments are discussed in the light of the main oceanographic processes present on the southern Brazilian shelf.
Resumo:
Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.
Resumo:
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy. Cancer Res; 72(23); 6200-8. (C) 2012 AACR.
Resumo:
Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein-ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (similar to 998 angstrom(2)) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT-mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.
Resumo:
Objective: To characterize optic nerve head (ONH) anatomy related to the clinical optic disc margin with spectral domain-optical coherence tomography (SD-OCT). Design: Cross-sectional study. Participants: Patients with open-angle glaucoma with focal, diffuse, and sclerotic optic disc damage, and age-matched normal controls. Methods: High-resolution radial SD-OCT B-scans centered on the ONH were analyzed at each clock hour. For each scan, the border tissue of Elschnig was classified for obliqueness (internally oblique, externally oblique, or nonoblique) and the presence of Bruch's membrane overhanging the border tissue. Optic disc stereophotographs were co-localized to SD-OCT data with customized software. The frequency with which the disc margin identified in stereophotographs coincided with (1) Bruch's membrane opening (BMO), defined as the innermost edge of Bruch's membrane; (2) Bruch's membrane/border tissue, defined as any aspect of either outside BMO or border tissue; or (3) border tissue, defined as any aspect of border tissue alone, in the B-scans was computed at each clock hour. Main Outcome Measures: The SD-OCT structures coinciding with the disc margin in stereophotographs. Results: There were 30 patients (10 with each type of disc damage) and 10 controls, with a median (range) age of 68.1 (42-86) years and 63.5 (42-77) years, respectively. Although 28 patients (93%) had 2 or more border tissue configurations, the most predominant one was internally oblique, primarily superiorly and nasally, frequently with Bruch's membrane overhang. Externally oblique border tissue was less frequent, observed mostly inferiorly and temporally. In controls, there was predominantly internally oblique configuration around the disc. Although the configurations were not statistically different between patients and controls, they were among the 3 glaucoma groups. At most locations, the SD-OCT structure most frequently identified as the disc margin was some aspect of Bruch's membrane and border tissue external to BMO. Bruch's membrane overhang was regionally present in the majority of patients with glaucoma and controls; however, in most cases it was not visible as the disc margin. Conclusions: The clinically perceived disc margin is most likely not the innermost edge of Bruch's membrane detected by SD-OCT. These findings have important implications for the automated detection of the disc margin and estimates of the neuroretinal rim. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012;119:738-747 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
The amphipod fauna was employed to investigate a bottom environmental gradient in the continental shelf adjacent to Santos Bay. The constant flow of less saline water from the estuarine complex of the Santos and São Vicente rivers besides the seasonal intrusion of the cold saline South Atlantic Central Water (SACW) bring a highly dynamic water regime to the area. Density, distribution, diversity and functional structure of the communities were studied on a depth gradient from 10 to 100 m on two cruises in contrasting seasons, winter 2005 and summer 2006. Twenty-one sediment samples were taken with a 0.09m² box corer. Temperature and salinity were measured at each station and an additional surface sediment sample was obtained with the box corer for granulometric and chemical analyses. Sixty species were collected on each survey and higher density values were found in summer. A priori one-way Analysis of Similarities (ANOSIM) indicated the existence of three different groups of amphipods related to the depth gradient: the Coastal group, the Mixed Zone group and the Deep Zone group. The Coastal Zone in both cruises was inhabited by a community presenting low diversity and density, besides high dominance of the infaunal tube-dweller Ampelisca paria; the area around 30 m presented the highest values of all the ecological indicators and the species showed several life styles; the outer area, situated between 50 and 100 m depth in the SACW domain, presented a community characterized by lower diversity and high biomass and density values. A season-depth ANOSIM showed the influence of depth and season for the Coastal and Mixed Zone groups whereas no seasonal difference was obtained for the Deep Zone group. The synergistic effect of the SACW and depth in the first place, followed by physical changes in substrate, seem to be the main factors controlling the fauna's distribution. In addition, the estuarine waters from Santos Bay apparently had no effect on the establishment of the environmental gradient observed on the adjacent shelf. Diversity, distribution, functional groups and trophic conditions of superficial sediments are discussed in the light of the main oceanographic processes present on the southern Brazilian shelf.
Resumo:
BACKGROUND: Aedes aegypti mosquitoes are the main vectors of dengue viruses. Despite global efforts to reduce the prevalence of dengue using integrated vector management strategies, innovative alternatives are necessary to help prevent virus transmission. Detailed characterizations of Ae. aegypti genes and their products provide information about the biology of mosquitoes and may serve as foundations for the design of new vector control methods. FINDINGS: We studied the Ae. aegypti gene, AAEL010714, that encodes a two-domain odorant-binding protein, AaegOBP45. The predicted gene structure and sequence were validated, although single nucleotide polymorphisms were observed. Transcriptional and translational products accumulate in the ovaries of blood fed females and are not detected or are at low abundance in other tissues. CONCLUSIONS: We validated the Ae. aegypti AAEL010714 gene sequence and characterized the expression profile of a two-domain OBP expressed in ovaries. We propose that AaegOBP45 function as a component of the mosquito eggshell.
Resumo:
Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.
Resumo:
Signal transduction pathways mediated by cyclic-bis(3'→5')-dimeric GMP (c-di-GMP) control many important and complex behaviors in bacteria. C-di-GMP is synthesized through the action of GGDEF domains that possess diguanylate cyclase activity and is degraded by EAL or HD-GYP domains with phosphodiesterase activity. There is mounting evidence that some important c-di-GMP-mediated pathways require protein-protein interactions between members of the GGDEF, EAL, HD-GYP and PilZ protein domain families. For example, interactions have been observed between PilZ and the EAL domain from FimX of Xanthomonas citri (Xac). FimX and PilZ are involved in the regulation of type IV pilus biogenesis via interactions of the latter with the hexameric PilB ATPase associated with the bacterial inner membrane. Here, we present the crystal structure of the ternary complex made up of PilZ, the FimX EAL domain (FimXEAL) and c-di-GMP. PilZ interacts principally with the lobe region and the N-terminal linker helix of the FimXEAL. These interactions involve a hydrophobic surface made up of amino acids conserved in a non-canonical family of PilZ domains that lack intrinsic c-di-GMP binding ability and strand complementation that joins β-sheets from both proteins. Interestingly, the c-di-GMP binds to isolated FimXEAL and to the PilZ-FimXEAL complex in a novel conformation encountered in c-di-GMP-protein complexes in which one of the two glycosidic bonds is in a rare syn conformation while the other adopts the more common anti conformation. The structure points to a means by which c-di-GMP and PilZ binding could be coupled to FimX and PilB conformational states
Resumo:
[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.
Resumo:
[EN] This work studies the structure-soil-structure interaction (SSSI) effects on the dynamic response of nearby piled structures under obliquely-incident shear waves. For this purpose, a three-dimensional, frequency-domain, coupled boundary element-finite (BEM-FEM) model is used to analyse the response of configuration of three buildings aligned parallel to the horizontal component of the wave propagation direction.
Resumo:
The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.