866 resultados para Dipl.-Wi.-Ing. Guido Gravenkötter
Resumo:
This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.
Resumo:
Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.
Resumo:
Norms regulate the behaviour of their subjects and define what is legal and what is illegal. Norms typically describe the conditions under which they are applicable and the normative effects as a results of their applications. On the other hand, process models specify how a business operation or service is to be carried out to achieve a desired outcome. Norms can have significant impact on how business operations are conducted and they can apply to the whole or part of a business process. For example, they may impose conditions on the different aspects of a process (e.g., perform tasks in a specific sequence (control-flow), at a specific time or within a certain time frame (temporal aspect), by specific people (resources)). We propose a framework that provides the formal semantics of the normative requirements for determining whether a business process complies with a normative document (where a normative document can be understood in a very broad sense, ranging from internal policies to best practice policies, to statutory acts). We also present a classification of normal requirements based on the notion of different types of obligations and the effects of violating these obligations.
Resumo:
This practice-led doctorate involved the development of a collection – a bricolage – of interwoven fragments of literary texts and visual imagery explor-ing questions of speculative fiction, urban space and embodiment. As a sup-plement to the creative work, I also developed an exegesis, using a combina-tion of theoretical and contextual analysis combined with critical reflections on my creative process and outputs. An emphasis on issues of creative practice and a sustained investigation into an aesthetics of fragmentation and assem-blage is organised around the concept and methodology of bricolage, the eve-ryday art of ‘making do’. The exegesis also addresses my interest in the city and urban forms of subjectivity and embodiment through the use of a range of theorists, including Michel de Certeau and Elizabeth Grosz.
Resumo:
Existing compliance management frameworks (CMFs) offer a multitude of compliance management capabilities that makes difficult for enterprises to decide on the suitability of a framework. Making a decision on the suitability requires a deep understanding of the functionalities of a framework. Gaining such an understanding is a difficult task which, in turn, requires specialised tools and methodologies for evaluation. Current compliance research lacks such tools and methodologies for evaluating CMFs. This paper reports a methodological evaluation of existing CMFs based on a pre-defined evaluation criteria. Our evaluation highlights what existing CMFs offer, and what they cannot. Also, it underpins various open questions and discusses the challenges in this direction.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.
Resumo:
Time plays an important role in norms. In this paper we start from our previously proposed classification of obligations, and point out some shortcomings of Event Calculus (EC) to represent obligations. We proposed an extension of EC that avoids such shortcomings and we show how to use it to model the various types of obligations.
Resumo:
The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffus- ing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell mem- brane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the mol- ecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to dis-criminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells.
Australian Research to Encourage School Students’ Positive Use of Technology to Reduce Cyberbullying
Resumo:
Information and Communications Technology (ICT) has spread rapidly in Australia. Mobile phones, which increasingly have advanced capabilities including Internet access, mobile television and multimedia storage, are owned by 22% of Australian children aged 9-11 years and 73% of those aged 12-14 years (Australian Bureau of Statistics, 2012b), as well as by over 90% of Australians aged 15 years and over(Australian Communications and Media Authority (ACMA), 2010). Nearly 80% of Australian households have access to the Internet and 73% have a broadband Internet connection, ensuring that Internet access is typically reliable and high-speed (Australian Bureau of Statistics, 2012a). Ninety percent of Australian children aged 5-14 years (comprising 79% of 5-8 year olds; 96% of 9-11 year olds; and 98% of 12-14 year olds) reported having accessed the Internet during 2011-2012, a significant increase from 79% in 2008-2009 (Australian Bureau of Statistics, 2012b). Approximately 90% of 5-14 year olds have accessed the Internet both from home and from school, with close to 49% accessing the Internet from other places (Australian Bureau of Statistics, 2012b). Young people often make use of borrowed Internet access (e.g. in friends’ homes), commercial access (e.g. cybercafés), public access (e.g. libraries), and mobile device access in areas offering free Wi-Fi (Lim, 2009).