915 resultados para Differential Subordination
Resumo:
Negative differential resistance (NDR) and memory phenomenon have been realized in current-voltage (I-V) characteristics of indium tin oxide/tris(8-hydroxyquinoline) aluminum/aluminum devices. The I-V curves have been divided into three operational regions that are associated with different working regimes of the devices: (i) bistable region, (ii) NDR region, and (iii) monotonic region. The bistable region disappeared after a couple of voltage sweeps from zero to a positive voltage. The bistable nature can be reinstated by applying a suitable negative voltage.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.
Resumo:
The authors observed a negative differential resistance (NDR) in organic devices consisting of 9,10-bis-(9,9-diphenyl-9H-fluoren-2-yl)-anthracene (DPFA) sandwiched between Ag and indium tin oxide electrodes. The large NDR shown in current-voltage characteristics is reproducible, resulting in that the organic devices can be electrically switched between a high conductance state (on state) and a low conductance state (off state). It can be found that the currents at both on to off states are space-charge limited and attributed to the electron traps at the Ag/DPFA interface. The large and reproducible NDR makes the devices of tremendous potential in low power memory and logic circuits.
Resumo:
Negative differential resistance ( NDR) and multilevel memory effects were obtained in organic devices consisting of an anthracene derivative, 9,10-bis-{ 9,9-di-[ 4-(phenyl-p-tolyl-amino)-phenyl]-9H-fluoren-2-yl}-anthracene ( DAFA), sandwiched between Ag and ITO electrodes. The application of a negative bias voltage leads to negative differential resistance in current-voltage characteristics and different negative voltages produce different conductance currents, resulting in the multilevel memory capability of the devices. The NDR property has been attributed to charge trapping at the DAFA/Ag interface. This opens up a wide range of application possibilities of such organic-based NDR devices in memory and logic circuits.
Resumo:
beta-Adrenoceptors(beta-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through which beta-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol (ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 70 spots were detected and about 1191 +/- 54 spots were matched, with an average matching rate of 92.9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.
Resumo:
After meso-tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene)porphyrin combined with McAb 1F2, there was a significant hyperchromic effect, indicating that the combination of porphyrin and antibody is rigid and compact, aromatic amino acids exist at the combining sites of antigen in antibody. These aromatic amino acids are Trys and Trps, but the numbers of Trp are more than that found for Trys. The stochiometric ratio of porphyrin to 1F2 is 1:1, the disassociation constant was determined as(2.084+/-0.216) x 10(-10) mol/L by a method of fluorescence quenching, showing that both have a high affinity.
Resumo:
The decomposing process of corn leaf residues (CLR) was studied by FTIR differential analysis,and the differential spectra were compared with normal spectra. The result showed that the purification process to remove inorganic matters from decomposed CLR could be omitted when differential analysis is used, and the differential spectra were cleat and distinct. As far as the studies of decomposed crop residues, the FTIR differential analysis was a convenient and forthright method.
Resumo:
We have developed a new theoretical model based on the MPB4 theory to calculate the differential capacitance of the interface of 0.05mol/L MgSO4 in water and 0.1mol/L TBATPB in nitrobenzene. Our results coincide with the experimental values very well. It indicates that our model may describe well the structure of ITIES not only in the presence of 1:1 electrolyte but also in the presence of 2:2 electrolyte.
Resumo:
The MPB4 theory is used to calculate the differential capacitance of the interface between LiCl in water and TBATPB in 1,2-dichloroethane at electrolyte concentrations of 0.005, 0.01 and 0.02 M. The effects of the ion size and the image force, and the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential drop are considered simultaneously. These effects can be ascribed to the ionic penetration into the opposite solution and ion-ion correlations across the interface. Our results are in better agreement with experimental data than those obtained using Gouy-Chapman theory. This indicates that the MPB4 theory may also describe the structure of the water \1,2-dichloroethane interface provided that the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential distribution are included in the calculation. Comparison of the theoretical results with those of the water \nitrobenzene interface shows that the structure of the water \1,2-dichloroethane interface is similar to that of the water \nitrobenzene interface, except that in the former case the inner-layer potential drop is much higher and the effects of the image force and the ion size are more pronounced.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
We use the MPB4 theory to calculate the differential capacitance of the interface between NaBr + water and tetrabutylammoniumtetraphenyl borate (TBATPB) + nitrobenzene at electrolyte concentrations of 0.01 M, 0.02 M and 0.05 M. In addition to the effects
Resumo:
The crystallinity of two series of uniform oligo(oxyethylene) mono-n-alkyl ethers has been investigated: alpha-alkyl,omega-hydroxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOH, and alpha-alkyl,omega-methoxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOCH3. The hydroxy-ended oligomers formed bilayer crystals, and the methoxy-ended oligomers formed monolayer crystals. The helical oxyethylene blocks were oriented normal to the layer-crystal end-group plane, whilst the trans-planar alkyl blocks were generally tilted at an angle delta = 60-degrees. The melting temperature and enthalpy of fusion were higher for hydroxy-ended oligomers than for corresponding methoxy-ended oligomers.
Resumo:
Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens. (C) 2010 Elsevier Ltd. All rights reserved.