990 resultados para Dano ao DNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphic forms of the DNA duplex with long stretches of structural monotony are known. Several alternating purine-pyrimidine sequences have been shown to adopt left-handed Z-conformation. We report a DNA sequence d(CGCGCGATCGAT)n exhibiting alternating right-handed B and left-handed Z helical conformation after every half a turn. Further, this unusual conformation with change in handedness after every six base pairs was induced at physiological superhelical density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies raised against denatured DNA complexed with methylated bovine serum albumin have been reported to react with ssDNA but not with dsDNA. Using a highly sensitive avidin-biotin microELISA, we report that such antibodies also bind to dsDNA. Antibodies which reacted with ssDNA and dsDNA were found to be IgG type. The antibodies did not react with tRNA and rRNA. The binding of antibodies to dsDNA was partially inhibited dy individual deoxyribonucleotides. ssDNA as well as dsDNA inhibited the binding of antibodies to dsDNA. The binding of these antibodies to supercoiled and relaxed forms of pBR322 DNA was demonstrated by gel retardation assay. The cross-reaction with ssDNA was observed even after affinity purification on native DNA-cellulose. The antibodies were also shown to bind to poly(dA-dT)·poly(dA-dT)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for generation of base-pairs in a curved DNA structure, for any prescribed values of helical parameters--unit rise (h), unit twist (theta), wedge roll (theta R) and wedge tilt (theta T), propeller twist (theta p) and displacement (D) is described. Its application for generation of uniform as well curved structures is also illustrated with some representative examples. An interesting relationship is observed between helical twist (theta), base-pair parameters theta x, theta y and the wedge parameters theta R, theta T, which has important consequences for the description and estimation of DNA curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dicobalt(II) complexes [{(B)Co-11)(2)(mu-dtdp)(2)] (1-3) of 3,3'-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido13,2-a:2',3'-clphenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of similar to 3.9 p per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving K-b values within 4.3 x 10(5)-4.0 x 10(6) M-1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.31 mu M in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 mu M. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 mu M in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 mu M). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA adopts different conformations not only based on novel base pairs, but also with different chain polarities. Besides several duplex structures (A, B, Z, parallel stranded (ps)-DNA, etc.), DNA also forms higher-order structures like triplex, tetraplex, and i-motif. Each of these structures has its own biological significance. The ps-duplexes have been found to be resistant to certain nucleases and endonucleases. Molecules that promote triple-helix formation have significant potential. These investigations have many therapeutic advantages which may be useful in the regulation of the expression of genes responsible for certain diseases by locking either their transcription (antigene) or translation (antisense). Each DNA minor groove binding ligand (MGBL) interacts with DNA through helical minor groove recognition in a sequence-specific manner, and this interferes with several DNA-associated processes. Incidentally, these ligands interact with some non-B-DNA and with higher-order DNA structures including ps-DNA and triplexes. While the design and recognition of minor grooves of duplex DNA by specific MGBLs have been a topic of many reports, limited information is available on the binding behavior of MGBLs with nonduplex DNA. In this review, we summarize various attempts of the interaction of MGBLs with ps-DNA and DNA triplexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies raised against deoxyadenylate and deoxycytidylate were found to react with double stranded DNA as assessed by highly sensitive avidin-biotin microELISA. The binding was specific as it was completely inhibited by the homologous hapten. The antibodies did not react with tRNA and rRNA. These antibodies were also shown to react with supercoiled and relaxed forms of pBR322 DNA as demonstrated by gel retardation assay. ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CT DNA, calf thymus DNA; AB microELISA, avidin-biotin microELISA; dpA, deoxyadenylate; dpC, deoxycytidylate; avidin-HRP, avidin-horseradish peroxidase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.