956 resultados para Crops and climate
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
Concerns about the sustainability of large-scale, direct-drilled RR-soybeans (Glycine max), and RR-maize (Zea mays) under monoculture in central Argentina are growing steadily. An experiment was conducted during three consecutive years to determine the effects of crops and systems (monocultures and strips) and herbicide strategy on weed density, population rate of change (l), b community diversity (H´), crop yields and Land Equivalent Ratio (LER). Not only crops but also crop systems differentially influenced weed densities along their growth and development. For crop harvests, weed densities increased in both maize crop systems as compared to in the one for soybeans, but the lowest increase occurred in soybean strips. Differences were leveled by both herbicide strategies, which achieved 73% efficacy during the critical periods in both crops. l of annual monocotyledonous increased, thus shifting the weed community composition. Species richness and H´ were not affected by crop systems, but both herbicide strategies, particularly POST, either in soybeans in monoculture or in maize strips, significantly enhanced H´. Crop yields significantly increased in the maize-strip system with POST (Year 1) or PRE (Years 2 and 3) strategies, thus increasing LER above 1. Herbicide Environmental Load treatments fall within very low or low field use rating.
Resumo:
The allelopathic effect studied in many cultures has currently generated great expectations that displayed a natural and environmentally friendly tool for weed management using bioherbicides. The objective of this work was to assess allelopathic influence of residues of S. trilobata on the germination and growth of weeds, as well as their relation with some crops and effects on soil properties. Results show that residues from S. trilobata have inhibited the germination of weeds (31.6 - 72%), increasingly with the applied dose. All residue doses of this specie have inhibited dicotyledonous germination, but only maximum concentration has affected monocotyledons. The residues did not affect onion germination, but stimulated it in radish and tomato, while the dose applied at 50% produced tomato stimulation and inhibition of cabbage. The effects of residues on hypocotyl growth in different crops showed changes in species response. For onion, the three doses had negative effects on the growth of hypocotyl, while tomato was stimulated. For radish, the growth was hindered by any dose applied, and were only different (50 and 100%) compared to control. For cabbage, only hypocotyl length was stimulated, when maximum dose (100%) was applied. For the radicle growth, in onion and radish no differences were found compared to control. While the tomato radicle growth was inhibited, in cabbage, all doses encouraged the elongation of the radicle. The dry mass of weed was affected by increased dose of residue (0.49 - 8.8 g m-2), however the soil microflora was stimulated, while the population of Azotobacter spp. was not affect. Some soil properties were affected, the level of organic material, Na+ and electrical conductivity were increased, while pH (H2O) decreased a bit, however it remained basic.
Resumo:
Global climate change and intentional climate modification, i.e. geoengineering include various ethical problems which are entangled as a complex ensemble of questions regarding the future of the biosphere. The possibilities of catastrophic effects of climate change which are also called “climate emergency” have led to the emergence of the idea of modifying the atmospheric conditions in the form of geoengineering. The novel issue of weather ethics is a subdivision of climate ethics, and it is interested in ethical and political questions surrounding weather and climate control and modification in a restricted spatio-temporal scale. The objective of geoengineering is to counterbalance the adverse effects of climate change and its diverse corollaries in various ways on a large scale. The claim of this dissertation is that there are ethical justifications to claim that currently large-scale interventions to the climate system are ethically questionable. The justification to pursue geoengineering on the basis of considering its pros and cons, is inadequate. Moral judgement can still be elaborated in cases where decisions have to be made urgently and the selection of desirable choices is severely limited. The changes needed to avoid severe negative impacts of climate change requires commitment to mitigation as well as social changes because technical solutions cannot address the issue of climate change altogether. The quantitative emphasis of consumerism should shift to qualitative focus on the aspiration for simplicity in order to a move towards the objective of the continuation of the existence of humankind and a flourishing, vital biosphere.
Resumo:
The study revealed that southwest monsoon rainfall in Kerala has been declining while increasing in post monsoon season. The annual rainfall exhibits a cyclic trend of 40-60 years, with a significant decline in recent decades. The intensity of climatological droughts was increasing across the State of Kerala through it falls under heavy rainfall zone due to unimodal rainfall pattern. The moisture index across the State of Kerala was moving from B4 to B3 humid, indicating that the State was moving from wetness to dryness within the humid climate.The study confirms that a warming Kerala is real as maximum, minimum and mean temperatures and temperature ranges are increasing. The rate of increase in maximum temperature was high (1.46°C) across the high ranges, followed by the coastal belt (1.09°C) of Kerala while the rate of increase was relatively marginal (0.25°C) across the midlands. The rate of increase in temperature across the high ranges is probably high because of deforestation. It indicates that the highranges and coastal belts in Kerala are vulnerable to global warming and climate change when compared to midlands.Interestingly, the trend in annual rainfall is increasing at Pampadumpara (Idukki), while declining at Ambalavayal across the highranges. In the case of maximum temperature, it was showing increasing trend at Pampadumpara while declining trend at Ambalavayal. In the case of minimum temperature it is declining at Pampadumpara while increasing in Ambalavalal.The paddy productivity in Kerala during kharif / virippu is unlikely to decline due to increasing temperature on the basis of long term climate change, but likely to decline to a considerable extent due to prolonged monsoon season, followed by unusual summer rains as noticed in 2007-08 and 2010-11.All the plantation crops under study are vulnerable to climate variability such as floods and droughts rather than long term changes in temperature and rainfall.
Resumo:
The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
Brazil has been increasing its importance in agricultural markets. The reasons are well known to be the relative abundance of land, the increasing technology used in crops, and the development of the agribusiness sector which allow for a fast response to price stimuli. The elasticity of acreage response to increases in expected return is estimated for Soybeans in a dynamic (long term) error correction model. Regarding yield patterns, a large variation in the yearly rates of growth in yield is observed, climate being probably the main source of this variation which result in ‘good’ and ‘bad’ years. In South America, special attention should be given to the El Niño and La Niña phenomena, both said to have important effects on rainfalls patterns and consequently in yield. The influence on El Niño and La Niña in historical data is examined and some ways of estimating the impact of climate on yield of Soybean and Corn markets are proposed. Possible implications of climate change may apply.
Resumo:
This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.
Resumo:
Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks (or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs’ range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.
Resumo:
The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles
Resumo:
Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.
Resumo:
The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10(6) ms(3) s(-1)) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.
Resumo:
The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.