929 resultados para Corneal limbal epithelial cells
Resumo:
The SIEGE (Smoking Induced Epithelial Gene Expression) database is a clinical resource for compiling and analyzing gene expression data from epithelial cells of the human intra-thoracic airway. This database supports a translational research study whose goal is to profile the changes in airway gene expression that are induced by cigarette smoke. RNA is isolated from airway epithelium obtained at bronchoscopy from current-, former- and never-smoker subjects, and hybridized to Affymetrix HG-U133A Genechips, which measure the level of expression of ~22 500 human transcripts. The microarray data generated along with relevant patient information is uploaded to SIEGE by study administrators using the database's web interface, found at http://pulm.bumc.bu.edu/siegeDB. PERL-coded scripts integrated with SIEGE perform various quality control functions including the processing, filtering and formatting of stored data. The R statistical package is used to import database expression values and execute a number of statistical analyses including t-tests, correlation coefficients and hierarchical clustering. Values from all statistical analyses can be queried through CGI-based tools and web forms found on the �Search� section of the database website. Query results are embedded with graphical capabilities as well as with links to other databases containing valuable gene resources, including Entrez Gene, GO, Biocarta, GeneCards, dbSNP and the NCBI Map Viewer.
Resumo:
Epithelial-mesenchymal transitions (EMTs) are believed to play a role in invasion and metastasis of many types of tumors. In this issue of the JCI, Chen et al. show that a gene that has been associated with aggressive biology in hepatocellular carcinomas initiates a molecular cascade that results in EMT.
Resumo:
Epithelial Na(+) channels mediate the transport of Na across epithelia in the kidney, gut, and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4 and Nedd4-2, with loss of this inhibition leading to hypertension. Here, we report that these channels are maintained in the active state by the G protein-coupled receptor kinase, Grk2, which has been previously implicated in the development of essential hypertension. We also show that Grk2 phosphorylates the C terminus of the channel beta subunit and renders the channels insensitive to inhibition by Nedd4-2. This mechanism has not been previously reported to regulate epithelial Na(+) channels and provides a potential explanation for the observed association of Grk2 overactivity with hypertension. Here, we report a G protein-coupled receptor kinase regulating a membrane protein other than a receptor and provide a paradigm for understanding how the interaction between membrane proteins and ubiquitin protein ligases is controlled.
Resumo:
The peptide tyrosine tyrosine (PYY) is produced and secreted from L cells of the gastrointestinal mucosa. To study the anatomy and function of PYY-secreting L cells, we developed a transgenic PYY-green fluorescent protein mouse model. PYY-containing cells exhibited green fluorescence under UV light and were immunoreactive to antibodies against PYY and GLP-1 (glucagon-like peptide-1, an incretin hormone also secreted by L cells). PYY-GFP cells from 15 μm thick sections were imaged using confocal laser scanning microscopy and three-dimensionally (3D) reconstructed. Results revealed unique details of the anatomical differences between ileal and colonic PYY-GFP cells. In ileal villi, the apical portion of PYY cells makes minimal contact with the lumen of the gut. Long pseudopod-like basal processes extend from these cells and form an interface between the mucosal epithelium and the lamina propria. Some basal processes are up to 50 μm in length. Multiple processes can be seen protruding from one cell and these often have a terminus resembling a synapse that appears to interact with neighboring cells. In colonic crypts, PYY-GFP cells adopt a spindle-like shape and weave in between epithelial cells, while maintaining contact with the lumen and lamina propria. In both tissues, cytoplasmic granules containing the hormones PYY and GLP-1 are confined to the base of the cell, often filling the basal process. The anatomical arrangement of these structures suggests a dual function as a dock for receptors to survey absorbed nutrients and as a launching platform for hormone secretion in a paracrine fashion.
Resumo:
Structural changes were observed in the digestive tubule epithelial cells of Mytilus edulis following long-term exposure to the water accommodated fraction (WAF) of North Sea crude oil (30 μg · l−1 total oil derived aromatic hydrocarbons). The changes observed involved a reduction in the height of the digestive cells beyond that demonstrated in a normal feeding cycle. In addition there was a loss of the normal synchrony of the digestive cells to a point where nearly all the tubules exhibited an appearance similar to that which is usually termed ‘reconstituting’. These alterations were quantified using an image analysis technique and the mean height of the digestive cells used as an index of digestive function or state. Long-term exposure also induced a radical alteration of the structure of secondary lysosomes within the digestive cells, resulting in the formation of large lysosomes, believed to be autolysosomes. Stereological analyses showed that these lysosomes are reduced in numbers and greatly increased in volume in comparison with controls. There is a concomitant increase in surface area of lysosomes per unit volume of digestive cell compared with control conditions. These alterations are indicative of fundamental changes in secondary lysosomal function involving an autophagic response to oil derived hydrocarbons. which would contribute to the reduction of digestive cell cytoplasm. These cellular alterations are discussed in terms of their use as indices of cell injury, in response to oil.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Resumo:
Background and aim: Aberrant angiogenesis and defective epithelial repair are key features of idiopathic pulmonary fibrosis (IPF). Endostatin is an antiangiogenic peptide with known effects on endothelial cells. This study aimed to establish the levels of endostatin in the bronchoalveolar lavage fluid (BALF) in IPF and to investigate its actions on distal lung epithelial cells (DLEC) and primary type II cells.
Resumo:
Alpha-1-antitrypsin (A1AT) deficiency is characterized by increased neutrophil elastase (NE) activity and oxidative stress in the lung. We hypothesized that NE exposure generates reactive oxygen species by increasing lung nonheme iron. To test this hypothesis, we measured bronchoalveolar lavage (BAL) iron and ferritin levels, using inductively coupled plasma (ICP) optical emission spectroscopy and an ELISA, respectively, in A1AT-deficient patients and healthy subjects. To confirm the role of NE in regulating lung iron homeostasis, we administered intratracheally NE or control buffer to rats and measured BAL and lung iron and ferritin. Our results demonstrated that A1AT-deficient patients and rats postelastase exposure have elevated levels of iron and ferritin in the BAL. To investigate the mechanism of NE-induced increased iron levels, we exposed normal human airway epithelial cells to either NE or control vehicle in the presence or absence of ferritin, and quantified intracellular iron uptake using calcein fluorescence and ICP mass spectroscopy. We also tested whether NE degraded ferritin in vitro using ELISA and western analysis. We demonstrated in vitro that NE increased intracellular nonheme iron levels and degraded ferritin. Our results suggest that NE digests ferritin increasing the extracellular iron pool available for cellular uptake.
Resumo:
Complex cell signal transduction mechanisms regulate intestinal epithelial shape, polarity, motility, organelles, cell membrane components as well as physical and mechanical properties to influence alimentary digestion, absorption, secretion, detoxification and fluid balance. Interactions between the epithelial cells and adjacent mesenchyme are central to intestinal homeostasis although the key regulatory molecules of specific differentiation steps remain unclear. Isolation and primary culture of heterotypic murine intestinal cells provides a model system for elucidation of essential molecular cross-talk between epithelium and mesenchyme that may provide several biological and practical advantages over transformed cell lines. An in vitro primary culture system for neonatal rat or mouse intestinal cells has been established that forms monolayers, expresses intestine-specific epithelial features including intestinal brush borders and appropriate hydrolase enzymes. Our studies confirm the promise of this method which may advance our understanding of heterotypic cellular interactions implicated in intestinal function and may provide important insights into the pathobiology of disease.
Resumo:
Polyomavirus enhancer activator 3 protein (Pea3), also known as ETV4, is a member of the Ets-transcription factor family, which promotes metastatic progression in various types of solid cancer. Pea3-driven epithelial-mesenchymal transition (EMT) has been described in lung and ovarian cancers. The mechanisms of Pea3-induced EMT, however, are largely unknown. Here we show that Pea3 overexpression promotes EMT in human breast epithelial cells through transactivation of Snail (SNAI1), an activator of EMT. Pea3 binds to the human Snail promoter through the two proximal Pea3 binding sites and enhances Snail expression. In addition, knockdown of Pea3 in invasive breast cancer cells results in down-regulation of Snail, partial reversal of EMT, and reduced invasiveness in vitro. Moreover, knockdown of Snail partially rescues the phenotype induced by Pea3 overexpression, suggesting that Snail is one of the mediators bridging Pea3 and EMT, and thereby metastatic progression of the cancer cells. In four breast cancer patient cohorts whose microarray and survival data were obtained from the Gene Expression Omnibus database, Pea3 and Snail expression are significantly correlated with each other and with overall survival of breast cancer patients. We further demonstrate that nuclear localization of Pea3 is associated with Snail expression in breast cancer cell lines and is an independent predictor of overall survival in a Chinese breast cancer patient cohort. In conclusion, our results suggest that Pea3 may be an important prognostic marker and a therapeutic target for metastatic progression of human breast cancer. © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. © European Molecular Biology Organization.
Resumo:
We hypothesised that primary bronchial epithelial cells (PBECs) from subjects with COPD respond differently to Pseudomonas aeruginosa lipopolysaccharide (PA LPS) after cigarette smoke extract (CSE) exposure than PBECs obtained from smokers without airflow obstruction (SWAO) and non-smokers (NS).PBECs from 16 COPD subjects, 10 SWAOand 9 NS were cultured at air-liquid interface. Cultures were incubated with CSE prior to stimulation with PA LPS. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 expression by FACS. Activation of NF-?B was determined by western blotting and ELISA, and MAPK and caspase-3 activity by western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) methods.Constitutive release of IL-8 and IL-6 was greatest from the COPD cultures.However, CSE pre-treatment followed by PA LPS stimulation reduced IL-8 release from COPD PBECs, but increased it from cells of SWAOand NS. TLR-4 expression,MAPK and NF-?B activation in COPD cultures were reduced after CSE treatment, but not in the SWAOor NS groups, which was associated with increased apoptosis.CSE attenuates inflammatory responses to LPS in cells from people with COPD but not those from non-smoking individuals and those who smoke without airflow obstruction.
Resumo:
Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexaeri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz(pHS2). Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.
Resumo:
Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.