960 resultados para Computer engineering|Engineering|Electrical engineering
Resumo:
The purpose of the research is to investigate the emerging data security methodologies that will work with most suitable applications in the academic, industrial and commercial environments. Of several methodologies considered for Advanced Encryption Standard (AES), MARS (block cipher) developed by IBM, has been selected. Its design takes advantage of the powerful capabilities of modern computers to allow a much higher level of performance than can be obtained from less optimized algorithms such as Data Encryption Standards (DES). MARS is unique in combining virtually every design technique known to cryptographers in one algorithm. The thesis presents the performance of 128-bit cipher flexibility, which is a scaled down version of the algorithm MARS. The cryptosystem used showed equally comparable performance in speed, flexibility and security, with that of the original algorithm. The algorithm is considered to be very secure and robust and is expected to be implemented for most of the applications.
Resumo:
Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a two-fold "custom wrapper" approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.
Resumo:
The primary purpose of this thesis was to design a logical simulation of a communication sub block to be used in the effective communication of digital data between the host and the peripheral devices. The module designed is a Serial interface engine in the Universal Serial Bus that effectively controls the flow of data for communication between the host and the peripheral devices with the emphasis on the study of timing and control signals, considering the practical aspects of them. In this study an attempt was made to realize data communication in the hardware using the Verilog Hardware Description language, which is supported by most popular logic synthesis tools. Various techniques like Cyclic Redundancy Checks, bit-stuffing and Non Return to Zero are implemented in the design to provide enhanced performance of the module.
Resumo:
A nuclear waste stream is the complete flow of waste material from origin to treatment facility to final disposal. The objective of this study was to design and develop a Geographic Information Systems (GIS) module using Google Application Programming Interface (API) for better visualization of nuclear waste streams that will identify and display various nuclear waste stream parameters. A proper display of parameters would enable managers at Department of Energy waste sites to visualize information for proper planning of waste transport. The study also developed an algorithm using quadratic Bézier curve to make the map more understandable and usable. Microsoft Visual Studio 2012 and Microsoft SQL Server 2012 were used for the implementation of the project. The study has shown that the combination of several technologies can successfully provide dynamic mapping functionality. Future work should explore various Google Maps API functionalities to further enhance the visualization of nuclear waste streams.
Resumo:
Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.
Resumo:
This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.
The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.
Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
With the development of information technology, the theory and methodology of complex network has been introduced to the language research, which transforms the system of language in a complex networks composed of nodes and edges for the quantitative analysis about the language structure. The development of dependency grammar provides theoretical support for the construction of a treebank corpus, making possible a statistic analysis of complex networks. This paper introduces the theory and methodology of the complex network and builds dependency syntactic networks based on the treebank of speeches from the EEE-4 oral test. According to the analysis of the overall characteristics of the networks, including the number of edges, the number of the nodes, the average degree, the average path length, the network centrality and the degree distribution, it aims to find in the networks potential difference and similarity between various grades of speaking performance. Through clustering analysis, this research intends to prove the network parameters’ discriminating feature and provide potential reference for scoring speaking performance.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de licenciada em Enfermagem
Resumo:
A dissertation submitted in fulfillment of the requirements to the degree of Master in Computer Science and Computer Engineering
Resumo:
The Pierre Auger Cosmic Ray Observatory North site employs a large array of surface detector stations (tanks) to detect the secondary particle showers generated by ultra-high energy cosmic rays. Due to the rare nature of ultra-high energy cosmic rays, it is important to have a high reliability on tank communications, ensuring no valuable data is lost. The Auger North site employs a peer-to-peer paradigm, the Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN), designed specifically for highly reliable message delivery over fixed networks, under hard real-time deadlines. The WAHREN design included two retransmission protocols, Micro- and Macro- retransmission. To fully understand how each retransmission protocol increased the reliability of communications, this analysis evaluated the system without using either retransmission protocol (Case-0), both Micro- and Macro-retransmission individually (Micro and Macro), and Micro- and Macro-retransmission combined. This thesis used a multimodal modeling methodology to prove that a performance and reliability analysis of WAHREN was possible, and provided the results of the analysis. A multimodal approach was necessary because these processes were driven by different mathematical models. The results from this analysis can be used as a framework for making design decisions for the Auger North communication system.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.