995 resultados para Classical-quantum interfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate complete characterization of a two-qubit entangling process-a linear optics controlled-NOT gate operating with coincident detection-by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is fat, worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine testicular hyalurphidase (BT-HAase), a tetrameric enzyme responsible for randomly hyaluronic acid, catalytic hydrolysis, was successfully immobilized on Langmuir- Blodgett films prepared with the sodium salt of dihexadacylphosphoric acid, (DHP-Zn(II)) ending with dipalmitoylphosphatidylcholine, DPPC. Data of protein, adsorption at the air-liquid interface by means of pendant drop shipe analysis and interaction of the protein with Langmuir monolayers of DPPC, using a Langmuir trough, have provided information. about the conditions to be used in the protein immobilization. The dynamic surface pressure curves obtained from pendant drop experiments for the enzyme in buffer solutions indicate that, within the range of concentration investigated in this study, the enzyme exhibits the largest induction time at 5 mu g L(-1) attributed to diffusion processes. Nevertheless, it seems that, at this concentration, the most probable conformation should be the one which occupies the smallest area at pi -> 0. The surface pressure (pi) area curves obtained for BT-HAase and mixed DPPC- BT-HAase monolayers reveal the presence of the enzyme at the air-lipid interface up to 45 mN m(-1). Tests of enzymatic activity, using hyaluronic acid, HA, as the substrate, showed an increase of activity compared to the homogeneous medium. A simplified model of protein insertion into the lipid matrix is used to explain the obtained results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the nondegenerate optical parametric oscillator with injected signal, both analytically and numerically. We develop a perturbation approach which allows us to find approximate analytical solutions, starting from the full equations of motion in the positive-P representation. We demonstrate the regimes of validity of our approximations via comparison with the full stochastic results. We find that, with reasonably low levels of injected signal, the system allows for demonstrations of quantum entanglement and the Einstein-Podolsky-Rosen paradox. In contrast to the normal optical parametric oscillator operating below threshold, these features are demonstrated with relatively intense fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.