986 resultados para Chemical Oxidation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six sensor units each having a pH, dissolved oxygen (DO) and oxidation reduction potential (ORP) sensor, plus a central logger, and connection cables were purchased from RBR (Ottawa). The sensing loggers were placed at a transect across the hot spot. Unfortunately, 5 of the 7 loggers were drowned. Only the central logger, that collected the data from the 6 sensor loggers, and one of the sensor loggers remained dry and functional. The sensor was positioned at 50 m south of the frame, in the center of the hot spot. The ORP did not show interpretable signals. The DO and pH signals showed good correlation (. At the end of October 2009 both signals decreased, the pH became as low as 4, possibly indicating increased seepage, or burial in expelled sediments. In December both sensors regained seawater values and then decreased again until the end of May 2010. A pH of 4 can only be reached by very high carbondioxide levels. The dynamics of the signals indicate eruptions and sediment movements from October 2009 till the end of the deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of modified TS-1 samples have been produced by desilication of the original TS-1 (4 wt.% Ti) using a chemical treatment with NaOH. Desilicated TS-1 zeolites exhibit a large BET surface area together with a well-developed mesoporosity. The hierarchical catalysts from desilication of TS-1 zeolite show a good catalytic activity for the oxidation of small molecules and a significantly higher activity for the oxidation of bulky molecules.