941 resultados para CURRENT DENSITY-VOLTAGE CHARACTERISTICS
Resumo:
Negative differential resistance ( NDR) and multilevel memory effects were obtained in organic devices consisting of an anthracene derivative, 9,10-bis-{ 9,9-di-[ 4-(phenyl-p-tolyl-amino)-phenyl]-9H-fluoren-2-yl}-anthracene ( DAFA), sandwiched between Ag and ITO electrodes. The application of a negative bias voltage leads to negative differential resistance in current-voltage characteristics and different negative voltages produce different conductance currents, resulting in the multilevel memory capability of the devices. The NDR property has been attributed to charge trapping at the DAFA/Ag interface. This opens up a wide range of application possibilities of such organic-based NDR devices in memory and logic circuits.
Resumo:
We analyze current versus voltage data obtained using single carrier injection in several metal/polymer/metal sandwich structures. The polymer used in each case is a soluble blue-emitting alternating block copolymer. Our experimental results demonstrate that the electron transport is space-charge limited by the high density of traps having an exponential energy distribution (temperature dependent characteristic energy) in the copolymer. The electron mobility of 8x10(-10) cm(2)/V s is directly determined using space-charge-limited current analytical expressions. Hole transport is also space-charge limited, with a mobility of 2x10(-6) cm(2)/V s. A hole trap with energy 0.17 eV is observed. We compare these results with those obtained for related block copolymers with different spacer and conjugated segment lengths and discuss the influence of spacer length and conjugated segment length on the charge transport properties. (C) 2000 American Institute of Physics. [S0021-8979(00)04501-1].
Resumo:
In this communication we analyse current versus voltage data obtained using one carrier injection at metal/polymer/metal structures, The used polymer is a soluble blue-emitting alternating block copolymer, Our experimental results demonstrate that the electron current is limited by a large amount of traps with exponential energy distribution in the copolymer. The electron ;mobility of 5.1 x 10(-10) cm(2)/V s is directly determined by space-charge-limited current measurements. The electron mobility is at least three orders of magnitude smaller than that for holes in the copolymer. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The conductivity mechanism for a carbon black (CB) filled high-density polyethylene (HDPE) compound was investigated in this work. From the experimental results obtained, it can be seen that the relation between electrical current density (J) and applied voltage across the sample (V) coincides with Simmons's equation (i.e., the electrical resistivity of the compound decreases with the applied voltage, especially at the critical voltage). The minimum electrical resistivity occurs near the glass transition temperature (T-g) of HDPE (198 K). It can be concluded that electron tunneling is an important mechanism and a dominant transport process in the HDPE/CB composite. A new model of carbon black dispersion in the matrix was established, and the resistivity was calculated by using percolation and quantum mechanical theories. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.
Resumo:
Theoretical and experimental values to date for the resistances of single molecules commonly disagree by orders of magnitude. By reformulating the transport problem using boundary conditions suitable for correlated many-electron systems, we approach electron transport across molecules from a new standpoint. Application of our correlated formalism to benzene-dithiol gives current-voltage characteristics close to experimental observations. The method can solve the open system quantum many-body problem accurately, treats spin exactly, and is valid beyond the linear response regime.
Resumo:
Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.
Resumo:
The tight-binding (TB) approach to the modelling of electrical conduction in small structures is introduced. Different equivalent forms of the TB expression for the electrical current in a nanoscale junction are derived. The use of the formalism to calculate the current density and local potential is illustrated by model examples. A first-principles time-dependent TB formalism for calculating current-induced forces and the dynamical response of atoms is presented. An earlier expression for current-induced forces under steady-state conditions is generalized beyond local charge neutrality and beyond orthogonal TB. Future directions in the modelling of power dissipation and local heating in nanoscale conductors are discussed.
Resumo:
We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.
Resumo:
Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.
Resumo:
Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.
Resumo:
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K + channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 µM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Ka (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Ka and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 µM). Single-cell RT-PCR revealed mRNA expression for the a-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory ß-subunits was detected for Kvß2 in all SPN with differential expression of mRNA for KChIP1, Kvß1 and Kvß3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the ß-subunit Kvß2. Differential expression of the accessory ß subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons. © 2011 IBRO.
Resumo:
This paper and its companion paper describe the comparison between a one-dimensional theoretical model of a hydrogen discharge in a magnetic multipole plasma source and experimental measurements of the plasma parameters. The discharge chamber, described here, has been designed to produce significant densities of H- ions by incorporating a weak transverse field through the discharge to obtain electron cooling so as to maximize H- production. Langmuir probes are used to monitor the plasma, determining the ion density, the electron density and temperature and the plasma potential. The negative density is measured by photo-detachment of the extra electron using an intense laser beam. The model, described in the companion paper, uses the presented source geometry to calculate these plasma quantities as a function of the major are parameters; namely the are current and voltage and gas pressure. Good agreement is obtained between theory and experiment as a function of position and arc parameters.
Resumo:
The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.