853 resultados para CICLO DEL AGUA
Resumo:
Esta tesis tiene como marco temporal el cambio del siglo XIX al siglo XX. Busca comprender cómo en el Quito urbano de esa época, la ciudad asume dos proyectos concretos que, relacionados, reflejan nuevas tendencias en los servicios urbanos y en las necesidades higiénicas del espacio y del individuo. El primero, la implementación de un sistema de abastecimiento de agua tratada (potable). El segundo, el discurso higienista en su esfera de salud y aseo, implementado en proyectos urbanos y de divulgación ciudadana. Así, los diferentes capítulos de esta investigación estudian a Quito como espacio urbano, los problemas del manejo del agua y los discursos que moldean los proyectos de la ciudad. Parte de un planteamiento desde la historia del medioambiente y se interroga sobre los discursos que construyen las prácticas en el manejo de la ciudad, dentro de un afán interdisciplinario entre la historia y los estudios de la cultura. Toma las nociones de progreso y modernización como nociones-fuerza que se configuran en un momento transitorio de una ciudad en expansión poblacional y espacial. Entiende la higiene como las prácticas y discursos sobre la salud y aseo de la ciudad y de sus habitantes.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
[ES] Esta charla se centra en la explotación petrolera en Ecuador, los aspectos sociales vinculados a la experencia petrolera y los distintos aspectos de la contaminación ambiental asociada, derrames de petróleo, contaminación del agua, suelos y atmósfera, centrándose en el caso TEXACO. Por último se referirá a la vinculación del petróelo y la Universidad en Ecuador. La conferencia lleva por título Petróleo, Sociedad y ambiente: el caso del Ecuador, América del Sur.
Resumo:
[ES] Los travertinos son depósitos carbonáticos de origen continental originados en ambientes de aguas termales cuya temperatura es superior a 20ºC. La desgasificación de CO2 y la actividad fotosintética son los factores principales que ayudan a la formación de estos depósitos carbonáticos termógenos. Las diatomeas junto con las cianobacterias son los principales microorganismos fotosintéticos asociados a las fuentes termales, travertinos y tobas. El barranco de Azuaje, situado en el norte de Gran Canaria, está excavado sobre los materiales generados durante las fases de volcanismo posteriores a 3 MA y tiene un régimen climático húmedo y cálido. Una característica de este barranco es la presencia de edificios carbonáticos estrechamente relacionados con la actividad de manantiales y aguas termales. La temperatura del agua es uno de los factores mas importantes para el desarrollo de las comunidades que crecen sobre la superficie (epilithon) y dentro (endolithon) de los travertinos y es este parámetro el que se usa como criterio mas generalizado para diferenciar y clasificar los diferentes edificios carbonáticos que aparecen en una gran diversidad de ambientes fluviales y lacustres, algo que resulta difícil establecer en sistemas fósiles. En este trabajo se presenta la microflora fósil de los travertinos del Barranco de Azuaje, se relaciona con los gradientes de temperatura del agua en los que crecen estos organismos en ambientes termales actuales, se ofrece una visión de las condiciones paleomedioambientales de los manantiales de Azuaje y se proporciona un criterio para diferenciar carbonatos formados a partir de aguas termales.
Resumo:
La charla corresponde al trabajo fin de Máster de la autora
Resumo:
[ES]La erupción submarina del volcán al sur de la Isla de El Hierro, en Octubre de 2011, ofreció una oportunidad excepcional para estudiar las consecuencias ambientales sobre comunidades marinas ante cambios climáticos drásticos. La erupción dio origen a gradientes bruscos en temperatura, acidificación del agua, concentración de azufre y hierro y oxígeno disuelto, que afectó de forma desigual a los organismos marinos. Mientras que muchos peces y crustáceos sufrieron las consecuencias letales de la ausencia de oxígeno en el agua, las bacterias crecieron de forma espectacular en el foco de la erupción. Las condiciones ambientales se asemejaron a las de las fuentes hidrotermales del fondo del océano, donde se piensa que tuvo lugar el origen de la vida.
Resumo:
[ES]La recarga al acuífero noreste de Gran Canaria ha sido calculada dentro del proyecto REDESAC mediante la realización de un balance diario de agua en el suelo. Para llevarlo a cabo ha sido necesario adaptar los datos de partida existentes referentes a la pluviometría, la evapotranspiración (ET0 y ETP) y los parámetros del suelo. La zona se ha dividido en subzonas según la situación de las estaciones pluviométricas y atendiendo a las características climáticas. Los cálculos realizados mediante la utilización del código Easy-Bal han arrojado una recarga de unos 15±4 hm3/a, lo que supone el 13±4% de la precipitación, la mayor parte de la misma concentrada en las zonas altas y de medianías
Resumo:
La creciente demanda, en los últimos años, a nivel mundial y nacional de los productos deshidratados hace que esta actividad se perfile como promisoria en la región cuyana. Prácticamente el 100 % de la deshidratación de cebolla (Allium cepa L.) del país se realiza en Mendoza, habiendose hecho sólo producciones aisladas y de escaso volúmen en otras plantas del país. Las estimaciones preveen que se seguirá abasteciendo el mercado local y se incrementaránlas exportaciones de cebolla deshidratada. El objetivo general del presente trabajo fue establecer la influencia de la fertilización y el riego sobre la productividad y calidad de un cultivar mejorado de cebolla de importancia económica para la industria del deshidratado. En el Campo Experimental del INTA La Consulta se llevaron a cabo durante los años 1994-´95 y 1995-´96, dos ciclos de ensayos, con una línea de cebolla para deshidratar derivada del cultivar Southport White Globe. El suelo es de origen aluvial, profundo y de textura franca (Torrifluvente típico). Se determinaron los principales parámetros físicos, químicos e hídricos de la fracción fina del suelo. Para determinar el efecto de la fertilización sobre componentes de crecimiento y calidad y estudiar la variación de la concentración y ritmo de absorción de nutrimentos se ensayaron diferentes tratamientos. En el primer ciclo se ensayaron nueve tratamientos con tres niveles de N (0, 100, 200 kg N ha-1 ) aplicado como urea y tres niveles de P (0, 30, 60 kg P ha-1 ) como superfosfato. En el segundo ciclo se probaron ocho tratamientos con los siguientes niveles de N, P y K, respectivamente: (0 y 100 kg N ha-1), (0 y 40 kg P ha-1) y (0 y 60 kg K ha-1), éste último como sulfato de potasio. Para evaluar el efecto de diferentes regímenes de riego al final del ciclo de cultivo sobre la produccción cuantitativa y cualitativa de cebolla para la industria del deshidratado se programaron cortes anticipados de riegos, según diferentes fechas anteriores a la cosecha. Estas fueron para el primero y segundo ciclo de ensayo, respectivamente: (33, 27, 21, 8) y (21,14, 7) días anteriores a la fecha de cosecha estimada. Las principales conclusiones fueron: A) Con respecto a la fertilización: i) En todos los casos, e independientemente del tratamiento ensayado el mayor incremento relativo de sustancia seca aérea se evidencia durante la II fase de viii desarrollo que tiene lugar entre los primeros días de noviembre y mediados de diciembre ii) En dicha II fase se comienzan a manifestar incrementos absolutos de peso seco aéreo y área foliar atribuibles a la fertilización iii) También en todos los tratamientos se verifica que al finalizar la II fase el peso de los bulbos alcanza el 20 % de su peso de cosecha. En ese momento, los valores determinados para el porcentaje de sólidos totales (% ST) oscilan entre 13 % y 14 % iv) La mayor tasa de crecimiento del bulbo se constató en la III fase en la que se logra el 80% restante de su peso final v) En la III fase el % ST del bulbo sigue en aumento hasta casi el momento de cosecha y alcanzó valores promedios de 20 % y 21 %. La fertilización con diferentes dosis de N, P y K no influyó en el contenido de materia seca de los bulbos aunque sí lo hizo positivamente sobre su peso fresco vi) Los máximos rendimientos de bulbos (37.3 Mg ha-1) y de materia seca (7.92 Mg ha-1) se obtuvieron, en el segundo ciclo de ensayo, con las dosis de 100 kg N ha-1 y 40 kg P ha-1 vii) Los parámetros tisulares aéreos de valor diagnóstico asociados a máximosrendimientos, y al final de la II fase, correspondieron a una Alimentación Global (N, P, K) de 4.96 g % g s. seca y concentraciones de N, P y K respectivamente de: 2.56 g %, 0.22 g % y 2.18 g %. En cuanto a los tenores de Ca y Mg los porcentajes respectivos fueron: 2.10 g % y 0.16 g %. Los valores medios de equilibrios nutricionales fueron: N - P - K: 52 % - 4% - 44%. Con respecto a los micronutrimentos sus concentraciones fueron, en mg kg-1, Fe: 400, Zn: 55, Mn: 35 y Cu:19 y los valores de equilibrios nutricionales : 78.5 % - 11 % - 7 % - 3.5 %, respectivamente viii) La extracción total efectuada por el cultivo para esas máximas producciones, en kg ha-1, de N - P - K - Ca - Mg fueron: 214 - 40 -187 - 184 -19 B) Con respecto a los regímenes de riego: i) El rendimiento máximo obtenido -38.9 Mg ha-1- en el ensayo de cortes anticipados de riego correspondió al tratamiento R7 del ciclo 1995-‘96 ii) El mismo perteneció al tratamiento, que además de la fertilización básica con 100 kg N ha-1, aseguró durante los meses de noviembre, diciembre y enero, ix hasta siete días antes de cosecha, una humedad edáfica mínima (umbral de riego) correspondiente al 50 % del agua disponible. Este tratamiento se caracterizó por un total de 18 riegos y una incorporación de agua de 6120 m3 ha-1. iii) Los rendimientos totales de materia seca fueron afectados detrimentalmente por los otros regímenes de riego de cortes más anticipados iv) Se constató una relación lineal positiva altamente ignificativa entre el rendimiento y la lámina total de agua aplicada al cultivo.
Resumo:
El sector riego representa en Argentina el 70% de todas las extracciones para uso del agua y tiene una eficiencia promedio del 40%, que resulta baja. Entre otros motivos, esto se debe principalmente al predominio de los métodos de riego por escurrimiento superficial sobre aquellos más modernos. Un síntoma de esta ineficiencia generalizada se manifiesta en el hecho de que de los 1,6 millones de hectáreas bajo riego que hay en el país, un tercio tiene problemas de salinización de suelo y/o de drenaje. El área regadía del río Mendoza es -sin dudas- la más importante de la provincia y sobre ella está asentada gran parte de la población provincial. Cuenta con un gran desarrollo industrial y con actividades que involucran a los distintos usos del agua. La reciente construcción sobre el río Mendoza, del dique Potrerillos, permitirá la regulación del mismo posibilitando una entrega programada a los usuarios a través de las 6 zonas de riego que la operan. El objetivo general del estudio es conocer el grado de aprovechamiento del agua de riego en el interior de las propiedades agrícolas pertenecientes al área de influencia del río Mendoza y estimar las eficiencias potenciales factibles de alcanzar considerando los posibles cambios operativos y el balance salino asegurando así un adecuado nivel productivo. Se plantean como objetivos específicos: conocer las láminas de riego, las eficiencias actuales y potenciales, la salinidad del suelo en la rizósfera y del agua de riego superficial, conocer los parámetros físicos (velocidad de infiltración, ecuaciones de avance del frente de agua y caracterizar la geometría de los surcos de la zona) y operativos (caudal de manejo y unitario). La unidad de análisis es la propiedad o finca. El tamaño de la muestra fue de 101 propiedades. La selección de las fincas fue realizada teniendo en cuenta principalmente dos criterios: primero, que las mismas se distribuyeran aproximadamente en igual cantidad en las 6 zonas de riego y sobre los canales más representativos de cada una de ellas para que las comparaciones fueran equivalentes y segundo, evaluar aquella propiedad, con derecho de riego superficial, que estuviera recibiendo el turno de riego habitual. Dentro de estos grupos las propiedades se seleccionaron en forma aleatoria. Para el estudio de la eficiencia de riego se ha utilizado la metodología de Chambouleyron y Morábito (1982) al tratar los casos de riego sin desagüe al pie y la metodología de Walker & Skogerboe (1987) para los casos de riego con desagüe al pie. El equipamiento utilizado comprendió aforadores portátiles, minimolinetes, anillos infiltrómetros, cintas métricas, nivel óptico, etc. Para conocer la salinidad de los suelos se extrajeron en cada propiedad evaluada seis muestras de suelo en los surcos o melgas (cabeza, medio y pie) a dos profundidades por cada ubicación (cultivos perennes: 0 a 50 y 50 a 100 cm y cultivos hortícolas: 0 a 25 y 25 a 50 cm) y en laboratorio se midió la conductividad eléctrica del extracto de saturación (CEes) expresándola en dS m-1 a 25ºC. También se realizaron los análisis de salinidad del agua en muestras tomadas en la bocatoma de la propiedad, expresada en dS m-1 a 25ºC. Se evaluó la respuesta de la salinidad del suelo a diferentes factores mediante un análisis de varianza unifactorial. Se consideraron los siguientes factores: zona de riego, cultivo, ubicación dentro de la parcela (cabeza, medio y pie), estrato de suelo (primero y segundo) y método de riego (surcos con/sin desagüe y melgas sin desagüe). La comparación de medias de los niveles de cada uno de los factores se realizó utilizando la prueba de Scheffé. Como la producción está vinculada a la disponibilidad de agua y al nivel de salinidad del suelo, se analizó también la relación que existe entre la salinidad del suelo (CEes) y las eficiencias de riego, para ello se consideró el coeficiente de variación (CV) de la CEes de los dos estratos de suelo (primer y segundo) y las tres ubicaciones dentro de cada parcela respecto de las eficiencias de distribución (EDI) y de almacenaje (EAL), según cultivos y método de riego. Para la relación EAL y CEes del perfil del suelo se realizó una discriminación de datos en tres estratos: EAL = 100%, 80% < EAL < 100% y EAL < 80%. Se analizó además la variación de la salinidad del agua de riego superficial en las distintas zonas. El estudio incluyó la estimación del valor de la Eficiencia de riego potencial (EAPp) utilizando dos metodologías: (a) una según el manejo del método de riego (EAPM) definida como aquella factible de alcanzar cuando se han optimizado las variables de riego (caudal unitario, tiempo de aplicación, pendiente, oportunidad de riego, etc.) y que indica el grado de eficiencia que puede alcanzar el método si el manejo es óptimo. Los valores EAPM fueron obtenidos con el modelo matemático SIRMOD (Walker, 1993); (b) otra considerando el balance salino del suelo (EAPS) y la relación entre la lámina media infiltrada y almacenada en la zona radical y la lámina media aplicada en el riego, considerando el requerimiento de lixiviación. Los componentes del balance salino que afectan la eficiencia de aplicación potencial utilizados fueron: evapotranspiración de los cultivos; probabilidad de ocurrencia de Etr; zona de riego y textura del suelo. Se realizó también un análisis de sensibilidad de las variables mencionadas, a fin de ordenarlas por su importancia. En todos los casos se calcularon las medidas de posición y dispersión de los parámetros sobre todas las combinaciones posibles entre niveles de todas las variables. La lámina percolada que asegure la EAPS se calculó con la ecuación de van der Molen (1983). Se utilizaron tres niveles diferentes del factor conductividad eléctrica del extracto de saturación final “CEesf" (después de un ciclo de riego), que fueron combinados con todos los demás niveles de los otros factores. Los resultados muestran que las láminas brutas de riego aplicadas con surcos s/D (76 mm) son significativamente menores (α = 0,05) que las registradas con surcos c/D (152 mm) y que ambas láminas anteriores no difieren significativamente de las aplicadas con melgas (117 mm). Con respecto a las láminas infiltradas (dinf) el resultado indica que hay diferencias significativas (α = 0,05) en las láminas infiltradas con los diferentes métodos: surcos c/D (36 mm), surcos s/D (76 mm) y melgas (113 mm) y que las melgas producen las mayores láminas percoladas: 47 mm respecto a 34 mm en los surcos s/D y a 8 mm en los surcos c/D, solo hay diferencias significativas (α = 0,05) entre melgas y surcos c/D. Con respecto a las velocidades de infiltración representativas de las series de suelos del río Mendoza se observa que son bajas con valores extremos de infiltración básica de 1,3 y 7,3 mm/h. Se han obtenido ecuaciones de avance del frente de agua que caracterizan los tres métodos de riego evaluados, ya sea en función del tiempo como en función del tiempo y el caudal unitario. Se ha caracterizado la geometría de los distintos tamaños o categorías de surcos locales disponiendo de información para mejorar el diseño. Hay diferencias significativas (α = 0,05) entre los caudales de manejo de surcos c/D (19 L s-1) y melgas (114 L s-1). Este último valor resulta alto -pero dentro de valores razonables- no obstante ello debería reducirse la variabilidad observada para mejorar las eficiencias. Con respecto a los caudales unitarios hay diferencias significativas (α = 0,05) entre surcos c/D (0,50 L s-1) respecto de surcos s/D (2,22 L s-1) y melgas (1,99 L s-1 m-1). La eficiencia de aplicación (EAP) media del área es de 59% correspondiéndole la calificación de desempeño “Mala". Dicho valor no es significativamente diferente en las distintas zonas de riego ni en las distintos estaciones del año. Hay diferencias significativas (α = 0,05) cuando se comparan: los métodos de riego s/D (surcos: 67% y melgas: 69%) respecto a aquellos métodos c/D (39%) y los cultivos: frutales (62%) y hortalizas (47%). Con respecto a EAL hay diferencias significativas (α = 0,05) de la zona 4 respecto a las zonas 1, 2 y 3; también son significativamente diferentes (α =0,05) los valores de EAL entre surcos c/D (71%) respecto a los métodos sin desagüe (86%). Para la eficiencia de distribución (EDI) resultan diferencias significativas (α = 0,05) entre melgas s/D (79%) y los surcos que presentan valores más altos (88 y 96%). Se observa que para el tamaño de muestra utilizado (n =101) corresponde una precisión en porcentaje respecto a la media para EAP = 10%, EAL = 6% y EDI = 5 %, para una confiabilidad del 95%. En cuanto a la salinidad del suelo en la rizósfera, la 4ta. zona de riego presenta los valores más altos (3,8 dS m-1), con diferencias significativas (α=0,05) del resto. Si bien la zona 3 tiene una salinidad media (2,1 dS m-1) más alta que el resto, las diferencias no son significativas. También se observa -sólo en el caso de los métodos de riego s/D- mayor salinidad (α=0,05) en la cabecera de la unidad de riego respecto al medio y al pie por alteración del patrón de infiltración y mayor cantidad de sales acumuladas (α=0,05) en el estrato superior (primero) que en el estrato inferior (segundo). La precisión del muestreo realizado para determinar la salinidad del suelo alcanza un valor de 6% del valor de la media para el tamaño de muestra utilizado (n = 537) y para una confiabilidad del 95%. El agua de riego posee un nivel de sales significativamente mayor en las zonas 4 (α = 0,05) y 5 (α = 0,1), resultando la zona 4 con una conductividad eléctrica 75% mayor (1,624 dS.m-1) y la zona 5 con una CE 25% mayor (1,161 dS.m-1) que la zona 2 (0,926 dS.m-1). Se observa que para el tamaño de muestra utilizado (n = 20 en zona 1 y n = 16 en zona 4) corresponde una precisión para CEagua menor al 5% del valor de la media (zona 1) y menor al 13% del valor de la media (zona 4) para una confiabilidad del 95%. El factor que más influye en la variación de la EAPS es la “zona de riego" definida por las variables “salinidad del suelo" y “salinidad del agua". Para el oasis del río Mendoza la eficiencia de aplicación factible de alcanzar en la parcela (considerando la salinidad medida en el agua de riego) si se propone como objetivo mantener el nivel salino actual del suelo, es del 61%. Este valor resulta muy próximo al medido a campo (59%) y al que asegura obtener el máximo rendimiento de los cultivos (según Maas-Hoffman) del 58%. Si -en cambio- se planteara como objetivo un 90% de la producción máxima debida a la salinidad del suelo, sería factible aumentar la eficiencia de aplicación al 71%, mientras que aquella factible de alcanzar optimizando los factores de manejo del riego sería del 79%. Las recomendaciones para mejorar las actuales eficiencias de riego se presentan en función del método de riego. Para el caso de riego con desagüe -cuya causa de ineficiencia es consecuencia de las excesivas pérdidas por escurrimiento al pie- se aconseja disminuir el volumen de agua escurrido al pie y asegurar el mojado del suelo en la rizósfera. Con respecto a los métodos de riego sin desagüe, las causas de ineficiencia más importantes son la excesiva percolación y los problemas de pendiente longitudinal que afecta la uniformidad de distribución del agua. Por ello, la estrategia deberá ser reducir las láminas de riego y corregir la pendiente de la unidad de riego.
Resumo:
La enseñanza, y en particular la de la natación, se la puede definir como la posibilidad de alguien, un docente, de transmitir ciertos contenidos, saberes como son, entre otros, los apoyos, las flotaciones, la respiración, las zambullidas, la técnica de crol, espalda, pecho, mariposa, las vueltas, las partidas, a otros sujetos, los alumnos; contextualizado todo en un medio especial, particular, con características únicas como es el acuático. Esta ponencia tiene como intención realizar una conceptualización, caracterización, análisis y desarrollo de uno de los contenidos de la natación como son los apoyos o propulsiones de brazos, siendo éstos todos aquellos movimientos que realiza el alumno abajo del agua con sus manos, antebrazo y brazo para empujar el cuerpo haciaadelante e ir elaborando y armando su estilo de nado. Es importante la construcción que el sujeto, guiado por el docente, debe realizar para poder apropiarse prácticamente de la posibilidad de sentir el agua y poder empujarla para lograr la propulsión que necesita para que su cuerpo se desplace en el medio acuático. Si bien son, en este contexto, los apoyos, una habilidad que se la tratará aisladamente, no es así en la intimidad de la clase, ya que forma parte de un conjunto de otros contenidos, planificados, que se necesitan, se entrecruzan y se van consolidando entre todos para lograr que el sujeto pueda nadar una distancia estipulada, con una técnica determinada y más adelante, hacerlo con economía de esfuerzos y en el menor tiempo posible
Resumo:
La enseñanza, y en particular la de la natación, se la puede definir como la posibilidad de alguien, un docente, de transmitir ciertos contenidos, saberes como son, entre otros, los apoyos, las flotaciones, la respiración, las zambullidas, la técnica de crol, espalda, pecho, mariposa, las vueltas, las partidas, a otros sujetos, los alumnos; contextualizado todo en un medio especial, particular, con características únicas como es el acuático. Esta ponencia tiene como intención realizar una conceptualización, caracterización, análisis y desarrollo de uno de los contenidos de la natación como son los apoyos o propulsiones de brazos, siendo éstos todos aquellos movimientos que realiza el alumno abajo del agua con sus manos, antebrazo y brazo para empujar el cuerpo haciaadelante e ir elaborando y armando su estilo de nado. Es importante la construcción que el sujeto, guiado por el docente, debe realizar para poder apropiarse prácticamente de la posibilidad de sentir el agua y poder empujarla para lograr la propulsión que necesita para que su cuerpo se desplace en el medio acuático. Si bien son, en este contexto, los apoyos, una habilidad que se la tratará aisladamente, no es así en la intimidad de la clase, ya que forma parte de un conjunto de otros contenidos, planificados, que se necesitan, se entrecruzan y se van consolidando entre todos para lograr que el sujeto pueda nadar una distancia estipulada, con una técnica determinada y más adelante, hacerlo con economía de esfuerzos y en el menor tiempo posible