970 resultados para Bicyclo[3.2.1]octane neolignans
Resumo:
The ir absorption of gaseous 15NH3 between 510 and 3040 cm−1 was recorded with a resolution of 0.06 cm−1. The ν2, 2ν2, 3ν2, ν4, and ν2 + ν4 bands were measured and analyzed on the basis of the vibration-rotation Hamiltonian developed by V. Špirko, J. M. R. Stone, and D. Papoušek (J. Mol. Spectrosc. 60, 159–178 (1976)). A set of effective molecular parameters for the ν2 = 1, 2, 3 states was derived, which reproduced the transition frequencies within the accuracy of the experimental measurements. For ν4 and ν2 + ν4 bands the standard deviation of the calculated spectrum is about four times larger than the measurements accuracy: a similar result was found for ν4 in 14NH3 by Š. Urban et al. (J. Mol. Spectrosc. 79, 455–495 (1980)). This result suggests that the present treatment takes into account only the most significant part of the rovibration interaction in the doubly degenerate vibrational states of ammonia.
Resumo:
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R, 2S, 3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-c arboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R, 2S, 3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R, 2S, 3R, alphaS)-3-methyl-2-N- benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with (KOBu)-Bu-t in (BuOH)-Bu-t gives tert-butyl (1S, 2S, 3R, alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carb oxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S, 2S, 3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.
Resumo:
Fulgimides monosubstituted with [M(bpy)(3)](2+) (M = Ru, Os; bpy = 2,2'-bipyridine) chromophore units and with a single bpy group were synthesized and investigated as components of conceivable dinuclear photochromic switches of luminescence. The E-, Z- and closed-ring (C) photoisomer forms of the bpy-bound fulgimide were successfully separated by semi-preparative HPLC. The same procedure failed, however, in the case of the [M(bpy)(3)](2+)-substituted fulgimides. Energy transfer from the excited photochromic unit to the metal-bpy centre competes with the fulgimide cyclization, reducing the photocyclization quantum yields by approximately one order of magnitude compared to the non-complexed fulgimide-bpy ligand (phi(EC) = 0.17, phi(EZ) = 0.071, phi(ZE) = 0.15 at lambda(exc) = 334 nm). The cycloreversion of the fulgimide-bpy ligand is less efficient (phi(CE) = 0.047 at lambda(exc) = 520 nm). The intensity of the (MLCT)-M-3-based luminescence of the metal-bpy chromophore (in MeCN, phi(deaer) = 6.6 x 10(-2) and tau(deaer) = 1.09 mu s for Ru; phi(deaer) = 6.7 x 10(-3) and tau(deaer) = 62 ns for Os) is not affected by the fulgimide photoconversion. These results and supporting spectro-electrochemical data reveal that the lowest triplet excited states of the photochromic fulgimide moiety in all its E-, Z- and closed-ring forms lie above the lowest 3MLCT levels of the attached ruthenium and osmium chromophores. The actual components are therefore unlikely to form a triad acting as functional switch of energy transfer from [Ru(bpy)(3)](2+) to [Os(bpy)(3)](2+) through the photochromic fulgimide bridge.
Resumo:
Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The complex [(C(NH2)3)3ZrOH(CO3)3·H2O]2 (A) has been shown by means of a single crystal X-ray diffraction study to contain [C(NH2)3]+ cations and dimeric anions of formulation [(ZrOH(CO3)3)2]6−. The anion is centrosymmetric with each metal being bonded to two bridging OH groups and three chelating CO2−3 ions. The Zr atoms are thus eight coordinate with a dodecahedral environments. The ZrO distances formed by the bridgng OH groups are shorter than those formed through zirconiu carbonate interactions. The non-bonded Zr…Zr distance is 3.47(2) Å. An infrared spectroscopic investigation of A provides data which support the findings of the crystallographic study. Likewise the complex Na6(ZrOH(CO2O4)3)2·7H2O (B) contains the anion [(ZrOH(C2O4)3)2]6−. This anion is structurally related to the anion in A as each Zr atom has an eight-coordinate dodecahedral environment being bonded to two bridging OH groups and three chelating oxalate ligands, but has no imposed crysallographic symmetry. The Zr…Zr non-bonded distance is 3.50(1) Å. The OZrO bridge angles are 69.7(4)° and A and 67.4(3)° in B.
Resumo:
W(CO)6 reacts with a mixture of acetic acid/acetic anhydride to give [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](CH3CO2)2 (1), which was converted by HClO4 to [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](ClO4)2 (2). Addition of CH3CO2Na to the above reaction mixture, and prolonged exposure of the solution to air, results in the formation of the WIV/WVI complex salt [W3(μ3-O)2(μ2η2-O2CCH3)6(H2O)3]2[W10O32]·solvent (3). Complex 3 was also prepared by reacting 1 with Na2WO4·2H2O in acetic acid, and it has been characterized by X-ray crystallography. Addition of [CH3(CH2)3]4N(ClO4) to the reaction filtrate remaining after the preparation of [Mo2(μ-O2CCH3)4][from Mo(CO)6, CH3CO2H and (CH3CO)2O], followed by exposure to air, gives ([CH3(CH2)3]4N)2[Mo6O19] (4).
Resumo:
In the present research, a 3 × 2 model of achievement goals is proposed and tested. The model is rooted in the definition and valence components of competence, and encompasses 6 goal constructs: task-approach, task-avoidance, self-approach, self-avoidance, other-approach, and other-avoidance. The results from 2 studies provided strong support for the proposed model, most notably the need to separate task-based and self-based goals. Studies 1 and 2 yielded data establishing the 3 × 2 structure of achievement goals, and Study 2 documented the antecedents and consequences of each of the goals in the 3 × 2 model. Terminological, conceptual, and applied issues pertaining to the 3 × 2 model are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
In this work we study the spontaneous breaking of superconformal and gauge invariances in the Abelian N = 1,2 three-dimensional supersymmetric Chern-Simons-matter (SCSM) theories in a large N flavor limit. We compute the Kahlerian effective superpotential at subleading order in 1/N and show that the Coleman-Weinberg mechanism is responsible for the dynamical generation of a mass scale in the N = 1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. We also show that the Coleman-Weinberg mechanism fails when we lift from the N = 1 to the N = 2 SCSM model. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
Structural and conformational properties of the molecule bis[isopropoxy(thiocarbonyl)]sulfide, [(CH(3))(2)CHOC(S)](2)S, have been studied by vibrational spectroscopy (IR and Raman) and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets). The crystal and molecular structure of the title compound was determined by X-ray diffraction methods. It crystallizes in the monoclinic C2/c space group with a = 8.4007(4), b = 13.5936(5), c = 10.3648(5) angstrom, beta = 106.024(4)degrees and Z = 4 molecules per unit cell. The molecules are sited on a crystallographic twofold axis passing through the sulphide atom and arranged in layers perpendicular to the b-axis. The solid state IR and Raman spectra of the compound give no sign of any other rotamer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Four new ternary complexes of copper(I) with thiosaccharin and phosphanes were prepared. The reaction of [Cu(4)(tsac)(4)(CH(3)CN)(2)] (1) (tsac: thiosaccharinate anion) with PPh(3) in molar ratios Cu(I)/PPh(3) 1:075 and 1:2 gave the complexes [Cu(4)(tsac)(4)(PPh(3))(3)] center dot CH(3)CN (2) and Cu(tsac)(PPh(3))(2) (3), respectively. The reaction of 1 with Ph(2)PCH(2)PPh(2) (dppm) in molar ratios Cu(I)/dppm 2:1 and 1:1 gave the complexes [Cu(4) (tsac)(4)(dppm)(2)] center dot 2CH(2)Cl(2) (4) and [Cu(2)(tsac)(2)(dppm)(2)] center dot CH(2)Cl(2) (5), respectively. All the compounds have been characterized by spectroscopic and X-ray crystallographic methods. Complex 2 presents a tetra-nuclear arrangement with three metal centers in distorted tetrahedral S(2)NP environments, the fourth one with the Cu(I) ion in a distorted trigonal S(2)N coordination sphere, and the tsac anions acting as six electron donor ligands in mu(3)-S(2)N coordination forms. Complex 3 shows mononuclear molecular units with copper(I) in a distorted trigonal planar coordination sphere, built with the exocyclic S atom of a mono-coordinated thiosaccharinate anion and two P-atoms of triphenylphosphane molecules. With dppm as secondary ligand the structures of the complexes depends strongly on the stoicheometry of the preparation reaction. Complex 4 has a centrosymmetric structure. Two triply bridged Cu(2)(tsac)(2)(dppm) units are joined together by the exocyclic S-atoms of two tsac anions acting effectively as bridging tridentate ligands. Complex 5 is conformed by asymmetric dinuclear moieties where the two dppm and one tsac ligands bridge two Cu(I) atoms and the second tsac anion binds one of the metal centers through its exocyclic S-atom. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Complexes of the type trans-[PdX(2)(isn)(2)] {X = Cl (1), N(3) (2), SCN (3), NCO (4); isn = isonicotinamide} were synthesized and evaluated for in vitro antimycobacterial and antitumor activities. The coordination mode of the isonicotinamide and the pseudohalide ligands was inferred by IR spectroscopy. Single crystal X-ray diffraction determination on 2 showed that coordination geometry around Pd(II) is nearly square planar, with the ligands in a trans configuration. All the compounds demonstrated better in vitro activity against Mycobacterium tuberculosis than isonicotinamide and pyrazinamide. Among the complexes, compound 2 was found to be the most active with MIC of 35.89 mu M. Complexes 1-4 were also screened for their in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O(2) ((1)Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O(2) ((1)Delta(g)). On the basis of (18)O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5 alpha-hydroperoxide (5 alpha-OOH) (the major product of O(2) ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O(2) ((1)Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5 alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O(2) ((1)Delta(g)) and raises questions about the role of ozone in biological processes.