895 resultados para Beta cell apoptosis
Resumo:
A rhabdovirus was observed from the diseased turbot (Scophthalmus maximus L.) with lethal syndrome. In this study, a carp leucocyte (CLC) cell line was used to investigate the infection process and cell death mechanism occurring during the virus infection. Strong cytopathogenic effect (CPE) and the morphological changes, such as extreme chromatin condensation, nucleus fragmentation, and apoptotic body formation, were observed under fluorescence microscopy after DAPI staining in the infected CLC cells. Transmission electron microscopy analysis showed cell shrinkage, plasma membrane blebbing, cytoplasm vacuolization, chromatin condensation, nuclear breakdown and formation of discrete apoptotic bodies. The bullet-shaped nucleocapsids were measured and ranged in size from 110 to 150 nm in length and 40 to 60 nm in diameter. And therefore the virus is called Scophthalmus maximus rhabdovirus (SMRV). Agarose gel electrophoresis analysis of the DNA extracted from infected cells showed typical DNA ladder in the course of SMRV infection. Flow cytometry analysis of SMRV infected CLC cells detected apoptotic peak in the virus infected CLC cells. Virus titre analysis and electron microscopic observation revealed that the virus replication fastigium was earlier than that of the apoptosis occurrence. No apoptosis was observed in the CLC infected with UV-inactivated SMRV. All these supported that SMRV infected CLC cells undergo apoptosis and the virus replication is necessary for apoptosis induction of CLC cells. (C) 2004 Published by Elsevier B.V.
Resumo:
Background: In recent years data from both mouse models and human tumors suggest that loss of one allele of genes involved in DNA repair pathways may play a central role in genomic instability and carcinogenesis. Additionally several examples in mouse models confirmed that loss of one allele of two functionally related genes may have an additive effect on tumor development. To understand some of the mechanisms involved, we examined the role of monoallelic loss or Atm and Brca1 on cell transformation and apoptosis induced by radiation. Methods: Cell transformation and apoptosis were measured in mouse embryo fibroblasts (MEF) and thymocytes respectively. Combinations of wild type and hemizygous genotypes for ATM and BRCA1 were tested in various comparisons. Results: Haploinsufficiency of either ATM or BRCA1 resulted in an increase in the incidence of radiation-induced transformation of MEF and a corresponding decrease in the proportion of thymocytes dying an apoptotic death, compared with cells from wild-type animals. Combined haploinsufficiency for both genes resulted in an even larger effect on apoptosis. Conclusions: Under stress, the efficiency and capacity for DNA repair mediated by the ATM/BRCA1 cell signalling network depends on the expression levels of both proteins.
Resumo:
Rhein, an anthraquinone derivative of rhubarb, inhibits the proliferation of various human cancer cells. In this paper, we focused on studying the effects of rhein on human hepatocelluar carcinoma BEL-7402 cells and further understanding the underlying molecular mechanism in an effort to make the potential development of rhein in the treatment of cancers. Using MTT assay and flow cytometry, we demonstrate a critical role of rhein in the suppression of BEL-7402 cell proliferation in a concentration- and time-dependent manner. The increase of apoptosis rate was observed after incubation of BEL-7402 cells with rhein at 50-200 mu M for 48 hours, and the cells exhibit typical apoptotic features including cellular morphological change and chromatin condensation. Moreover, rhein-induced cell cycle S-phase arrest. Additionally, after rhein treatment, expression levels of c-Myc gene were decreased, while those of caspase-3 gene were increased in a dose-dependent manner by using real-time PCR assay. The results demonstrate for the first time that cell cycle S-phase arrest is one of the mechanisms of rhein in inhibition of BEL-7402 cells. Rhein plays its role by inducing cell cycle arrest via downregulation of oncogene c-Myc and apoptosis through the caspase-dependent pathway. It is expected that rhein will be effective and useful as a new agent in hepatocelluar carcinoma treatment in the future.
Resumo:
The p75 neurotrophin receptor (p75NTR) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners - including the TNF receptor associated factor 6 (TRAF6) E3 ubiquitin ligase - to produce cellular responses such as apoptosis, survival, and inhibition of neurite outgrowth. Recently,p75NTR was also shown to undergo γ-secretase-mediated regulated intramembrane proteolysis, and the receptor ICD was found to migrate to the nucleus where it regulates gene transcription. Moreover, γ-secretase-mediated proteolysis was shown to be involved in glioblastoma cell migration and invasion. In this study we report that TRAF6-mediated K63-linked polyubiquitination at multiple or alternative lysine residues influences p75NTR-ICD stability in vitro. In addition, we found that TRAF6-mediated ubiquitination of p75NTR is not influenced by inhibition of dynamin. Moreover, we report beta-transducin repeats-containing protein (β-TrCP) as a novel E3- ligase that ubiquitinates p75NTR, which is independent of serine phosphorylation of the p75NTR destruction motif. In contrast to its influence on other substrates, co-expression of β-TrCP did not reduce p75NTR stability. We created U87-MG glioblastoma cell lines stably expressing wild type, γ-secretaseresistant and constitutively cleaved receptor, as well as the ICD-stabilized mutant K301R. Interestingly, only wild-type p75NTR induces increased glioblastoma cell migration, which could be reversed by application of γ-secretase inhibitor. Microarray and qRT-PCR analysis of mRNA transcripts in these cell lines yielded several promising genes that might be involved in glioblastoma cell migration and invasion, such as cadherin 11 and matrix metalloproteinase 12. Analysis of potential transcription factor binding sites revealed that transcription of these genes might be regulated by well known p75NTR signalling cascades such as NF-κB or JNK signalling, which are independent of γ-secretase-mediated cleavage of the receptor. In contrast, while p75NTR overexpression was confirmed in melanoma cell lines and a patient sample of melanoma metastasis to the brain, inhibition of γ-secretase did not influence melanoma cell migration. Collectively, this study provides several avenues to better understand the physiological importance of posttranslational modifications of p75NTR and the significance of the receptor in glioblastoma cell migration and invasion.
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.
Resumo:
BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.
Resumo:
Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.
Resumo:
The use of apoptosis-inducing agents in the treatment of malignant cancer is increasingly being considered as a therapeutic approach. In this study, the induction of apoptosis and necrosis was examined in terms of temporal dose responses, comparing a malignant and nonmalignant breast cell line. Staurosporine (SSP)-induced apoptosis and H2O2-induced necrosis were evaluated by two cytotoxicity assays, neutral red (NR) and methyl-thiazolyl tertrazolium (MTT), in comparison with a differential dye uptake assay, using Hoechst33342/propidium iodide (Hoechst/PI). Confirmatory morphological assessment was also performed by routine resin histology and transmission electron microscopy. Cell viability was assessed over a 0.5-48 h time course. In nonmalignant HBL-100 cells, 50 nM SSP induced 100% apoptosis after a 48 h exposure, while the same exposure to SSP caused only 4% apoptosis in metastatic T47D cells. Although complete apoptosis of both cell lines was induced by 50 M SSP, this effect was delayed in T47D (24 h) compared with HBL-100 (4 h). Results also showed that neither MTT or NR can distinguish between the modes of cell death, nor detect the early onset of apoptosis revealed by Hoechst/PI.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p