939 resultados para Bayesian belief network


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional safety program managers face a daunting challenge in the attempt to reduce deaths, injuries, and economic losses that result from motor vehicle crashes. This difficult mission is complicated by the combination of a large perceived need, small budget, and uncertainty about how effective each proposed countermeasure would be if implemented. A manager can turn to the research record for insight, but the measured effect of a single countermeasure often varies widely from study to study and across jurisdictions. The challenge of converting widespread and conflicting research results into a regionally meaningful conclusion can be addressed by incorporating "subjective" information into a Bayesian analysis framework. Engineering evaluations of crashes provide the subjective input on countermeasure effectiveness in the proposed Bayesian analysis framework. Empirical Bayes approaches are widely used in before-and-after studies and "hot-spot" identification; however, in these cases, the prior information was typically obtained from the data (empirically), not subjective sources. The power and advantages of Bayesian methods for assessing countermeasure effectiveness are presented. Also, an engineering evaluation approach developed at the Georgia Institute of Technology is described. Results are presented from an experiment conducted to assess the repeatability and objectivity of subjective engineering evaluations. In particular, the focus is on the importance, methodology, and feasibility of the subjective engineering evaluation for assessing countermeasures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing a nationwide Electronic Health Record system has become a primary objective for many countries around the world, including Australia, in order to improve the quality of healthcare while at the same time decreasing its cost. Doing so will require federating the large number of patient data repositories currently in use throughout the country. However, implementation of EHR systems is being hindered by several obstacles, among them concerns about data privacy and trustworthiness. Current IT solutions fail to satisfy patients’ privacy desires and do not provide a trustworthiness measure for medical data. This thesis starts with the observation that existing EHR system proposals suer from six serious shortcomings that aect patients’ privacy and safety, and medical practitioners’ trust in EHR data: accuracy and privacy concerns over linking patients’ existing medical records; the inability of patients to have control over who accesses their private data; the inability to protect against inferences about patients’ sensitive data; the lack of a mechanism for evaluating the trustworthiness of medical data; and the failure of current healthcare workflow processes to capture and enforce patient’s privacy desires. Following an action research method, this thesis addresses the above shortcomings by firstly proposing an architecture for linking electronic medical records in an accurate and private way where patients are given control over what information can be revealed about them. This is accomplished by extending the structure and protocols introduced in federated identity management to link a patient’s EHR to his existing medical records by using pseudonym identifiers. Secondly, a privacy-aware access control model is developed to satisfy patients’ privacy requirements. The model is developed by integrating three standard access control models in a way that gives patients access control over their private data and ensures that legitimate uses of EHRs are not hindered. Thirdly, a probabilistic approach for detecting and restricting inference channels resulting from publicly-available medical data is developed to guard against indirect accesses to a patient’s private data. This approach is based upon a Bayesian network and the causal probabilistic relations that exist between medical data fields. The resulting definitions and algorithms show how an inference channel can be detected and restricted to satisfy patients’ expressed privacy goals. Fourthly, a medical data trustworthiness assessment model is developed to evaluate the quality of medical data by assessing the trustworthiness of its sources (e.g. a healthcare provider or medical practitioner). In this model, Beta and Dirichlet reputation systems are used to collect reputation scores about medical data sources and these are used to compute the trustworthiness of medical data via subjective logic. Finally, an extension is made to healthcare workflow management processes to capture and enforce patients’ privacy policies. This is accomplished by developing a conceptual model that introduces new workflow notions to make the workflow management system aware of a patient’s privacy requirements. These extensions are then implemented in the YAWL workflow management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the use of servo-mechanisms as part of a tightly integrated homogeneous Wireless Multi- media Sensor Network (WMSN). We describe the design of our second generation WMSN node platform, which has increased image resolution, in-built audio sensors, PIR sensors, and servo- mechanisms. These devices have a wide disparity in their energy consumption and in the information quality they return. As a result, we propose a framework that establishes a hierarchy of devices (sensors and actuators) within the node and uses frequent sampling of cheaper devices to trigger the activation of more energy-hungry devices. Within this framework, we consider the suitability of servos for WMSNs by examining the functional characteristics and by measuring the energy consumption of 2 analog and 2 digital servos, in order to determine their impact on overall node energy cost. We also implement a simple version of our hierarchical sampling framework to evaluate the energy consumption of servos relative to other node components. The evaluation results show that: (1) the energy consumption of servos is small relative to audio/image signal processing energy cost in WMSN nodes; (2) digital servos do not necessarily consume as much energy as is currently believed; and (3) the energy cost per degree panning is lower for larger panning angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposals arising from the agreement reached between the Rudd government and the States and Territories (except Western Australia) in April 2010 represent the most fundamental realignment of health responsibilities since the creation of Medicare in 1984. They will change the health system, and the structures that will craft its future direction and design. These proposals will have a significant impact on Emergency Medicine; an impact from not only the system-wide effects of the proposals but also those that derive from the specific recommendations to create an activity-based funding mechanism for EDs, to implement the four hour rule and to develop a performance indicator framework for EDs. The present paper will examine the potential impact of the proposals on Emergency Medicine to inform those who work within the system and to help guide further developments. More work is required to better evaluate the proposals and to guide the design and development of specific reform instruments. Any such efforts should be based upon a proper analysis of the available evidence, and a structured approach to research and development so as to deliver on improved services to the community, and on improved quality and safety of emergency medical care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal decision-making requires us to accurately pinpoint the basis of our thoughts, e.g. whether they originate from our memory or our imagination. This paper argues that the phenomenal qualities of our subjective experience provide permissible evidence to revise beliefs, particularly as it pertains to memory. I look to the source monitoring literature to reconcile circumstances where mnemic beliefs and mnemic qualia conflict. By separating the experience of remembering from biological facts of memory, unusual cases make sense, such as memory qualia without memory (e.g. déjà vu, false memories) or a failure to have memory qualia with memory (e.g. functional amnesia, unintentional plagiarism). I argue that a pragmatic, probabilistic approach to belief revision is a way to rationally incorporate information from conscious experience, whilst acknowledging its inherent difficulties as an epistemic source. I conclude with a Bayesian defense of source monitoring based on C.I. Lewis’ coherence argument for memorial knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile