957 resultados para Ascidian Embryos
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.
Resumo:
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.
Resumo:
The rocky intertidal zone has the potential to be one of the harshest environments for free-spawning organisms, but empirical data on fertilization success are scarce. Here, I report on an intertidal, solitary ascidian, Pyura stolonifera, which was observed to spawn at low tide. At a scale likely to be most important to gametes (metres, duration of tide), approximately 30% of individuals in the population were spawning synchronously. Spawned gametes remained in a viscous matrix and this appeared to minimise their dilution. Fertilization success varied greatly among individuals (0 to 92%) and was related to the distance to the nearest neighbouring spawner. Occasional wave wash facilitated the movement of sperm between spawners. Fertilization success in some individuals was limited by the scarcity of sperm whilst the experimental addition of sperm did not increase success in others.
Resumo:
For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.
Resumo:
There has been growing interest in the effects of variation in larval quality on the post-larval performance of adult marine invertebrates. Variation in egg/larval size is an obvious source of variation in larval quality but sources of variation have received little attention. For broadcast spawners, larval size may vary according to the local sperm environment but the generality of this result is unclear. Here, we show that, for a solitary ascidian, a polychaete and an echinoid, larval size is affected by the concentration of sperm present during fertilization. Larvae that are produced at high sperm concentrations are smaller than larvae that are produced from eggs exposed to low sperm concentrations. We also show that for three ascidians and an asteroid, egg size increases with maternal body size. These differences in larval size are likely to affect larval and subsequent adult performance in the field. Given that sperm concentrations in the field can fluctuate widely, it is likely that larval quality in free-spawning marine invertebrates will also vary widely.
Resumo:
Effects of variation in larval quality on post-metamorphic performance in marine invertebrates are increasingly apparent. Recently, it has been shown that variation in offspring size can also strongly affect post-settlement survival, but variation in environmental conditions can mediate this effect. The quality of habitat into which marine invertebrate larvae settle can vary markedly, and 1 influence on quality is the number of conspecifics present. We tested the effects of settler size and settler density on early (1 wk after settlement) post-settlement survival in the field for the solitary ascidian Ciona intestinalis. Larger settlers survived better than smaller settlers, within and among groups of siblings. Increases in the density of settlers decreased survival, but the density-dependent effects were much stronger for smaller settlers. We suggest that larger settlers are better able to cope with intra-specific competition because they have greater energetic reserves or a greater capacity to feed than smaller settlers.
Resumo:
The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a newbeginning, and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats.
Resumo:
Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In preparing for metamorphosis, insect larvae store a huge amount of proteins in hemolymph, mainly hexamerins. Out of the four hexamerins present in the honeybee larvae, one, HEX 70a, exhibited a distinct developmental pattern, especially since it is also present in adults. Here, we report sequence data and experimental evidence suggesting alternative functions for HEX 70a, besides its well-known role as an amino acid resource during metamorphosis. The hex 70a gene consists of 6 exons and encodes a 684 amino acid chain containing the conserved hemocyanin N, M, and C domains. HEX 70a classifies as an arylphorin since it contains more than 15% of aromatic amino acids. In the fat body of adult workers, hex 70a expression turned out to be a nutrient-limited process. However, the fat body is not the only site for hex 70a expression. Both, transcript and protein subunits were also detected in developing gonads from workers, queens and drones, suggesting a role in ovary differentiation and testes maturation and functioning. In its putative reproductive role, HEX 70a however differs from the yolk protein, vitellogenin, since it was not detected in eggs or embryos. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.
Resumo:
In many species, females are thought to benefit from polyandry due to the reduced risks of fertilization by genetically incompatible sperm. However, few studies that have reported such benefits have directly attributed variation in female reproductive success to the interacting effects of males and females at fertilization. In this paper, we determine whether male x female interactions influence fertilization in vitro in the free-spawning, sessile polychaete Galeolaria caespitosa. Furthermore, we determined whether polyandry results in direct fertilization benefits for females by experimentally manipulating the number of males contributing towards staged spawning events. To test for male x female interaction effects we performed an initial experiment that crossed seven males with six females (in all 42 combinations), enabling us to assess fertilization rates for each specific male-female pairing and attribute variation in fertilization success to males, females and their interaction. This initial experiment revealed a strong interaction between males and females at fertilization, confirming that certain male-female combinations were more compatible than others. A second experiment tested the hypothesis that polyandry enhances female reproductive success by exposing each female's eggs to either a single male's sperm (monandry) or the sperm from three males simultaneously (polyandry). We performed this second experiment at two ecologically relevant sperm concentrations. This latter experiment revealed a strong fertilization benefit of polyandry, independent of the effects of sperm concentration (which were also significant). We suggest that these direct fertilization gains arising from polyandry will constitute an important source of selection on females to mate multiply in nature.
Resumo:
A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.
Resumo:
The biphasic life cycle, characterised by metamorphosis from a pelagic larva to a benthic adult, is found throughout the Metazoa. So is sexual reproduction via eggs and sperm. Amidst a tangled web of hypotheses on the origin of metazoan biphasy, current weight of opinion lies with a simple, larva-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This school of thought derives from Haeckel's interpretation of the gastrula as the recapitulation of a gastrean ancestor that evolved via selection on a simple, planktonic hollow ball-of-cells to develop the capacity to feed. We suggest that a paradigm shift is required to accomodate accumulating evidence of the genomic and developmental complexity of the metazoan last common ancestor, which was likely to have already possessed a biphasic lifecycle. Here we incorporate recent evidence from basal metazoans, in particular poriferans, to argue that a more parsimonious theory of the origin of biphasy is as a direct consequence of sexual reproduction in an ancestral benthic adult form. The metazoan embryo can itself be considered the precursor to a biphasic life cycle, wherein the embryo represents one phase and the adult another. Embryos in the water column are subject to natural selection for longeveity and dispersal, which sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. This alternate view considers the conserved use of regulatory genes in disparate metazoans as a reflection of both the complexity of the LCA and the antiquity of the biphasic life cycle. It does not require that extant embryogenesis, including gastrulation, recapitulates evolution.
Resumo:
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.