973 resultados para Approximations
Resumo:
The empirical pseudopotential method within the virtual crystal approximation is used to calculate the band structure of Mg1-xZnySySe1-y, which has recently been proved to be a potential semiconductor material for optoelectronic device applications in the blue spectral region. It is shown that MgZnSSe can be a direct or an indirect semiconductor depending on the alloy composition. Electron and hole effective masses are calculated for different compositions. Polynomial approximations are obtained for both the energy gap and the effective mass as functions of alloy composition at the GAMMA valley. This information will be useful for the future design of blue wavelength optoelectronic devices as well as for assessment of their properties.
Resumo:
We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
In the petroleum exploration industry, it is very important to simulate the evolvement of wave field beneath our earth in the aspects of time and space quickly and effectively. Because of the huge data size in petroleum exploration and also the strict requirement of time limit in the actual process of production, simplification of models and approximation of algorithm are necessary. At the same time, every fine improvement to algorithm has its great practical significance and use value. Based on the reasons above, this dissertation researches the separable approximation methods of space-wave number domain for One-way Wave Operator and gets the conclusions as follow: 1. It is insufficient to value One-way Wave Operator purely from the mathematical modulus and phase error, while, holding some specific structural character of operator should be more important. Because, the evaluation criterion of One-way Wave Operator’s imaging ability is quite complicate and obscured, which is similar to the evaluation of an artwork. 2. We can not search for a best or most effective One-way Wave Operator approximation solution for all. However, to different speed model and precision requirement the best approximation solution does exist which is maybe also a compromise, because it is very beneficial to One-way Wave Operator to take full advantage of speed model’s pre-tested information.
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.
Resumo:
Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm.
Resumo:
Essery, RLH, RJ Granger and JW Pomeroy, 2006. Boundary layer growth and advection of heat over snow and soil patches: Modelling and parametrization. Hydrological Processes, 20, 953 - 967.
Resumo:
Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1
Resumo:
We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.
Resumo:
The topic of this thesis is an acoustic scattering technique for detennining the compressibility and density of individual particles. The particles, which have diameters on the order of 10 µm, are modeled as fluid spheres. Ultrasonic tone bursts of 2 µsec duration and 30 MHz center frequency scatter from individual particles as they traverse the focal region of two confocally positioned transducers. One transducer acts as a receiver while the other both transmits and receives acoustic signals. The resulting scattered bursts are detected at 90° and at 180° (backscattered). Using either the long wavelength (Rayleigh) or the weak scatterer (Born) approximations, it is possible to detennine the compressibility and density of the particle provided we possess a priori knowledge of the particle size and the host properties. The detected scattered signals are digitized and stored in computer memory. With this information we can compute the mean compressibility and density averaged over a population of particles ( typically 1000 particles) or display histograms of scattered amplitude statistics. An experiment was run first run to assess the feasibility of using polystyrene polymer microspheres to calibrate the instrument. A second study was performed on the buffy coat harvested from whole human blood. Finally, chinese hamster ovary cells which were subject to hyperthermia treatment were studied in order to see if the instrument could detect heat induced membrane blebbing.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.
Resumo:
We propose that a simple, closed-form mathematical expression--the Wedge-Dipole mapping--provides a concise approximation to the full-field, two-dimensional topographic structure of macaque V1, V2, and V3. A single map function, which we term a map complex, acts as a simultaneous descriptor of all three areas. Quantitative estimation of the Wedge-Dipole parameters is provided via 2DG data of central-field V1 topography and a publicly available data set of full-field macaque V1 and V2 topography. Good quantitative agreement is obtained between the data and the model presented here. The increasing importance of fMRI-based brain imaging motivates the development of more sophisticated two-dimensional models of cortical visuotopy, in contrast to the one-dimensional approximations that have been in common use. One reason is that topography has traditionally supplied an important aspect of "ground truth", or validation, for brain imaging, suggesting that further development of high-resolution fMRI will be facilitated by this data analysis. In addition, several important insights into the nature of cortical topography follows from this work. The presence of anisotropy in cortical magnification factor is shown to follow mathematically from the shared boundary conditions at the V1-V2 and V2-V3 borders, and therefore may not causally follow from the existence of columnar systems in these areas, as is widely assumed. An application of the Wedge-Dipole model to localizing aspects of visual processing to specific cortical areas--extending previous work in correlating V1 cortical magnification factor to retinal anatomy or visual psychophysics data--is briefly discussed.
Resumo:
Molecular tunnel junctions involve studying the behaviour of a single molecule sandwiched between metal leads. When a molecule makes contact with electrodes, it becomes open to the environment which can heavily influence its properties, such as electronegativity and electron transport. While the most common computational approaches remain to be single particle approximations, in this thesis it is shown that a more explicit treatment of electron interactions can be required. By studying an open atomic chain junction, it is found that including electron correlations corrects the strong lead-molecule interaction seen by the ΔSCF approximation, and has an impact on junction I − V properties. The need for an accurate description of electronegativity is highlighted by studying a correlated model of hexatriene-di-thiol with a systematically varied correlation parameter and comparing the results to various electronic structure treatments. The results indicating an overestimation of the band gap and underestimation of charge transfer in the Hartree-Fock regime is equivalent to not treating electron-electron correlations. While in the opposite limit, over-compensating for electron-electron interaction leads to underestimated band gap and too high an electron current as seen in DFT/LDA treatment. It is emphasised in this thesis that correcting electronegativity is equivalent to maximising the overlap of the approximate density matrix to the exact reduced density matrix found at the exact many-body solution. In this work, the complex absorbing potential (CAP) formalism which allows for the inclusion metal electrodes into explicit wavefunction many-body formalisms is further developed. The CAP methodology is applied to study the electron state lifetimes and shifts as the junction is made open.
Resumo:
The analysis of energy detector systems is a well studied topic in the literature: numerous models have been derived describing the behaviour of single and multiple antenna architectures operating in a variety of radio environments. However, in many cases of interest, these models are not in a closed form and so their evaluation requires the use of numerical methods. In general, these are computationally expensive, which can cause difficulties in certain scenarios, such as in the optimisation of device parameters on low cost hardware. The problem becomes acute in situations where the signal to noise ratio is small and reliable detection is to be ensured or where the number of samples of the received signal is large. Furthermore, due to the analytic complexity of the models, further insight into the behaviour of various system parameters of interest is not readily apparent. In this thesis, an approximation based approach is taken towards the analysis of such systems. By focusing on the situations where exact analyses become complicated, and making a small number of astute simplifications to the underlying mathematical models, it is possible to derive novel, accurate and compact descriptions of system behaviour. Approximations are derived for the analysis of energy detectors with single and multiple antennae operating on additive white Gaussian noise (AWGN) and independent and identically distributed Rayleigh, Nakagami-m and Rice channels; in the multiple antenna case, approximations are derived for systems with maximal ratio combiner (MRC), equal gain combiner (EGC) and square law combiner (SLC) diversity. In each case, error bounds are derived describing the maximum error resulting from the use of the approximations. In addition, it is demonstrated that the derived approximations require fewer computations of simple functions than any of the exact models available in the literature. Consequently, the regions of applicability of the approximations directly complement the regions of applicability of the available exact models. Further novel approximations for other system parameters of interest, such as sample complexity, minimum detectable signal to noise ratio and diversity gain, are also derived. In the course of the analysis, a novel theorem describing the convergence of the chi square, noncentral chi square and gamma distributions towards the normal distribution is derived. The theorem describes a tight upper bound on the error resulting from the application of the central limit theorem to random variables of the aforementioned distributions and gives a much better description of the resulting error than existing Berry-Esseen type bounds. A second novel theorem, providing an upper bound on the maximum error resulting from the use of the central limit theorem to approximate the noncentral chi square distribution where the noncentrality parameter is a multiple of the number of degrees of freedom, is also derived.