738 resultados para Annotation de génomes
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Extensión y uso de KML para la anotación, georreferenciación y distribución de recursos de tipo MIME
Resumo:
En el actual contexto de la Web 2.0 y de la futura Web Geográfica o simplemente GeoWeb la información georreferenciada cobra cada día más importancia. Desde hace años distintas técnicas han sido desarrolladas para dar solución al problema de la georreferenciación de recursos de distinta índole. Sin embargo ninguna de estas técnicas está exenta de problemas y restricciones. En este estudio presentamos una nueva aproximación que intenta facilitar la georreferenciación y distribución de recursos de tipos contemplados como Multipurpose Internet Mail Extensions (MIME). El elemento básico para la anotación, georreferenciación y también representación del recurso es el Keyhole Markup Language (KML). Este lenguaje permite la anotación y visualización de elementos, así como su extensión para aumentar su funcionalidad. Esta última propiedad se ha utilizado en nuestra aproximación para crear nuevos elementos que permitan la anotación de cualquier tipo de recurso MIME sobre KML obteniendo así la extensión KML MIMEXT. Esta extensión permite describir y georreferenciar tipos de recursos no habituales en el entorno SIG. La encapsulación del propio recurso junto con sus metadatos (incluyendo la georreferenciación) y otros recursos relacionados se realiza mediante la compresión de todos ellos en un único archivo KMZ facilitando así su distribución y mantenimiento. De forma similar a la interpretación de etiquetas HTML5 como video por los navegadores Web, el uso de la extensión MIMEXT podría ser implementado por visores basados en globos virtuales para visualizar o reproducir nuevos tipos de recursos. Para ejemplificar dicho comportamiento se ha implementado un prototipo de aplicación Java basado en el SDK World Wind Java
Resumo:
A exposição ao sol traz benefícios à saúde, no entanto, o excesso pode ocasionar danos cutâneos dentre os quais se destacam as neoplasias. A fotoproteção é um método para a prevenção dos efeitos danosos da radiação ultravioleta (UV) e a biodiversidade Brasileira é campo fértil para pesquisas nesta área. Dessa forma, os objetivos deste estudo envolveram o desenvolvimento de formulações fotoprotetoras contendo quercetina (composto bioativo) e filtros solares físicos (dióxido de titânio e óxido de zinco), com posterior caracterização das formulações e avaliação da sua estabilidade. As formulações contendo o composto bioativo, isolado ou em associação com os filtros físicos, possuíram valores de pH biocompatíveis com a pele,intervalo de viscosidade aparente entre 10550 e 23600 cP; fator de proteção solar (FPS) estimado entre 2.1 e 22.5; e amplo espectro de proteção, com comprimentos de onda crítico acima de 379 nm. Constatou-se que não foi adequado utilizar a quercetina associada aos filtros solares físicos devido às interações negativas que ocorreram entre o composto e os metais, somente identificadas ao longo do estudo de estabilidade. No entanto, em função da eficácia estimada in vitro apresentada pelo flavonoide, seu uso ainda pode ser explorado como substituto alternativo aos filtros solares clássicos.
Resumo:
Debido al reciente reconocimiento en la Constitución ecuatoriana de 2008 de los afroecuatorianos como un grupo con derechos colectivos a sus territorios ancestrales, el Bernard and Audre Rapoport Center for Human Rights and Justice ha dirigido un estudio legal sobre la política relacionada con los derechos territoriales de las comunidades rurales afroecuatorianas. El estudio incluye el trabajo de una delegación de investigadores que visitaron Quito, Esmeraldas y el Valle del Chota en la primavera de 2009. Este reporte está basado en información colectada en reuniones llevadas a cabo en Ecuador, entre delegados del Centro Rapoport y los miembros de la comunidad afroecuatoriana, activistas, académicos y oficiales del Estado. El reporte examina la situación que enfrentan comunidades afroecuatorianas rurales y su lucha por los derechos territoriales.
Resumo:
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.
Resumo:
Most newly sequenced proteins are likely to adopt a similar structure to one which has already been experimentally determined. For this reason, the most successful approaches to protein structure prediction have been template-based methods. Such prediction methods attempt to identify and model the folds of unknown structures by aligning the target sequences to a set of representative template structures within a fold library. In this chapter, I discuss the development of template-based approaches to fold prediction, from the traditional techniques to the recent state-of-the-art methods. I also discuss the recent development of structural annotation databases, which contain models built by aligning the sequences from entire proteomes against known structures. Finally, I run through a practical step-by-step guide for aligning target sequences to known structures and contemplate the future direction of template-based structure prediction.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructurall protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.
Resumo:
Establishing the mechanisms by which microbes interact with their environment, including eukaryotic hosts, is a major challenge that is essential for the economic utilisation of microbes and their products. Techniques for determining global gene expression profiles of microbes, such as microarray analyses, are often hampered by methodological restraints, particularly the recovery of bacterial transcripts (RNA) from complex mixtures and rapid degradation of RNA. A pioneering technology that avoids this problem is In Vivo Expression Technology (IVET). IVET is a 'promoter-trapping' methodology that can be used to capture nearly all bacterial promoters (genes) upregulated during a microbe-environment interaction. IVET is especially useful because there is virtually no limit to the type of environment used (examples to date include soil, oomycete, a host plant or animal) to select for active microbial promoters. Furthermore, IVET provides a powerful method to identify genes that are often overlooked during genomic annotation, and has proven to be a flexible technology that can provide even more information than identification of gene expression profiles. A derivative of IVET, termed resolvase-IVET (RIVET), can be used to provide spatio-temporal information about environment-specific gene expression. More recently, niche-specific genes captured during an IVET screen have been exploited to identify the regulatory mechanisms controlling their expression. Overall, IVET and its various spin-offs have proven to be a valuable and robust set of tools for analysing microbial gene expression in complex environments and providing new targets for biotechnological development.
Resumo:
BACKGROUND: In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power.In this paper we describe and benchmark the JYDE (Job Yield Distribution Environment) system, which is a meta-scheduler designed to work above cluster schedulers, such as Sun Grid Engine (SGE) or Condor. We demonstrate the ability of JYDE to distribute the load of genomic-scale fold recognition across multiple independent Grid domains. We use the most recent profile-profile version of our mGenTHREADER software in order to annotate the latest version of the Human proteome against the latest sequence and structure databases in as short a time as possible. RESULTS: We show that our JYDE system is able to scale to large numbers of intensive fold recognition jobs running across several independent computer clusters. Using our JYDE system we have been able to annotate 99.9% of the protein sequences within the Human proteome in less than 24 hours, by harnessing over 500 CPUs from 3 independent Grid domains. CONCLUSION: This study clearly demonstrates the feasibility of carrying out on demand high quality structural annotations for the proteomes of major eukaryotic organisms. Specifically, we have shown that it is now possible to provide complete regular updates of profile-profile based fold recognition models for entire eukaryotic proteomes, through the use of Grid middleware such as JYDE.
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
Search engines exploit the Web's hyperlink structure to help infer information content. The new phenomenon of personal Web logs, or 'blogs', encourage more extensive annotation of Web content. If their resulting link structures bias the Web crawling applications that search engines depend upon, there are implications for another form of annotation rapidly on the rise, the Semantic Web. We conducted a Web crawl of 160 000 pages in which the link structure of the Web is compared with that of several thousand blogs. Results show that the two link structures are significantly different. We analyse the differences and infer the likely effect upon the performance of existing and future Web agents. The Semantic Web offers new opportunities to navigate the Web, but Web agents should be designed to take advantage of the emerging link structures, or their effectiveness will diminish.
Resumo:
Whilst there is increasing evidence tht the outcome of the interation between a pathogen and a host is dependent on protein-protein interactions, very little information is available on in planta proteomics of biotrophic plant pathogens. Here a proteogenomic approach has been employed to supplement the annotation of the recently sequenced genome and to cast light on the biology of the infection process of the economically important barley powdery mildew pathogen, Blumeria graminis f.sp hordei