965 resultados para Amplitude-modulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy.Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinase-linked receptors and nuclear receptors connect external cues to gene transcription. Among nuclear receptors, peroxisome proliferator-activated receptors (PPARs) are of special interest in relation to widespread human diseases. Mapping out connections between PPARs and kinase-linked receptor signaling is central to better understand physiological and pathophysiological processes and to better define therapeutic strategies. This is the aim of the present review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension and death. Administration of nitric oxide (NO) alone remains ineffective in CDH cases. We investigated in near full-term lambs with and without CDH the role of guanylate cyclase (GC), the enzyme activated by NO in increasing cyclic 3'-5'-guanylosine monophosphate, and the role of phosphodiesterase (PDE) 5, the enzyme-degrading cyclic 3'-5'-guanylosine monophosphate. METHODS: Congenital diaphragmatic hernia was surgically created in fetal lambs at 85 days of gestation. Pulmonary hemodynamics were assessed by means of pressure and blood flow catheters (135 days). In vitro, we tested drugs on rings of isolated pulmonary vessels. RESULTS: In vivo, sodium nitroprusside, a direct NO donor, and methyl-2(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5 trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032) and Zaprinast, both PDE 5 blockers, reduced pulmonary vascular resistance in CDH and non-CDH animals. The activation of GC by sodium nitroprusside and the inhibition of PDE 5 by T-1032 were less effective in CDH animals. In vitro, the stimulation of GC by 3(5'hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) (a benzyl indazole derivative) and the inhibition of PDE 5 by T-1032 were less effective in pulmonary vascular rings from CDH animals. The YC-1-induced vasodilation in rings from CDH animals was higher when associated with the PDE 5 inhibitor T-1032. CONCLUSIONS: Guanylate cyclase and PDE 5 play a role in controlling pulmonary vascular tone in fetal lambs with or without CDH. Both enzymes seem to be impaired in fetal lambs with CDH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7±2.7% and 55.0±3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9±1.9% to 33.5±0.7% (p<0.01) and the total Nedd4-2 protein to 44%±0.13% of its basal level (p<0.01, n=4 animals in each group, mean±SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method and circuit for the conversion of binary phase-shift keying (BPSK) signals into amplitude shift keying signals. The basic principles of the conversion method are the superharmonic injection and locking of oscillator circuits, and interference phenomena. The first one is used to synchronize the oscillators, while the second is used to generate an amplitude interference pattern that reproduces the original phase modulation. When combined with an envelope detector, the proposed converter circuit allows the coherent demodulation of BPSK signals without need of any explicit carrier recovery system. The time response of the converter circuit to phase changes of the input signal, as well as the conversion limits, are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the feasibility of a new circuit for the conversion of binary phase-shift keying signals into amplitude-shift keying signals. In its simplest form, the converter circuit is composed by a power divider, a couple of second harmonic injection-locked oscillators, and a power combiner. The operation of the converter circuit relies on the frequency synchronization of both oscillators and the generation of an interference pattern by combining their outputs, which reproduces the original phase modulation. Two prototypes of the converter have been implemented. The first one is a hybrid version working in the 400-530-MHz frequency range. The second one has been implemented using multichip-module technology, and is intended to work in the 1.8-2.2-GHz frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.