401 resultados para Actinomyces bovis
Resumo:
The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximate to 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microphis, and the B. microphis-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick.
Resumo:
Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity.
Resumo:
All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
La tuberculosis es una zoonosis bacteriana que representa un importante problema sanitario en el hombre y los animales (domésticos y silvestres), siendo en estos Mycobacterium bovis y M. caprae las especies de mayor relevancia. La enfermedad tiene un gran impacto económico ya que produce un descenso de la producción de los animales y restricciones en su movimiento, además de los costes derivados de su erradicación en el ganado bovino. Actualmente, la tuberculosis en otras especies domésticas como la cabra, comienza a tener relevancia en aquellos países con elevado censo de caprino. Por otra parte, los camélidos de Sudamérica (alpacas y llamas principalmente), se emplean cada vez con mayor frecuencia fuera de su hábitat natural como mascotas y para la producción de fibra. Además, son altamente susceptibles a la enfermedad, habiéndose notificado varios brotes de tuberculosis en estos animales en Europa. Los programas de erradicación se basan en una estrategia de “diagnóstico y sacrificio”, de tal modo que los animales positivos a las pruebas diagnósticas se eliminan de la explotación. Las técnicas diagnósticas oficiales en la Unión Europea son la prueba de la intradermotuberculinización (IDTB) y el test de detección de interferón-gamma (IFN-γ), que detectan la respuesta inmune de base celular. Existen, además, pruebas para la detección de anticuerpos, algunas disponibles comercialmente y otras en fase experimental. Con el objetivo de optimizar el diagnóstico de la tuberculosis en rumiantes (ganado bovino y caprino) y en camélidos (llamas y alpacas), se han realizado siete estudios experimentales, distribuidos en cuatro capítulos, diseñados para cumplir los cuatro objetivos de la presente tesis doctoral...
Resumo:
BACKGROUND: Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment.
RESULTS: We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 μM BW284c51.
CONCLUSIONS: These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.
Resumo:
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Resumo:
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged with Mycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.
Resumo:
Progress in control of bovine tuberculosis (bTB) is often not uniform, usually due to the effect of one or more sometimes unknown epidemiological factors impairing the success of eradication programs. Use of spatial analysis can help to identify clusters of persistence of disease, leading to the identification of these factors thus allowing the implementation of targeted control measures, and may provide some insights of disease transmission, particularly when combined with molecular typing techniques. Here, the spatial dynamics of bTB in a high prevalence region of Spain were assessed during a three year period (2010-2012) using data from the eradication campaigns to detect clusters of positive bTB herds and of those infected with certain Mycobacterium bovis strains (characterized using spoligotyping and VNTR typing). In addition, the within-herd transmission coefficient (β) was estimated in infected herds and its spatial distribution and association with other potential outbreak and herd variables was evaluated. Significant clustering of positive herds was identified in the three years of the study in the same location ("high risk area"). Three spoligotypes (SB0339, SB0121 and SB1142) accounted for >70% of the outbreaks detected in the three years. VNTR subtyping revealed the presence of few but highly prevalent strains within the high risk area, suggesting maintained transmission in the area. The spatial autocorrelation found in the distribution of the estimated within-herd transmission coefficients in herds located within distances <14 km and the results of the spatial regression analysis, support the hypothesis of shared local factors affecting disease transmission in farms located at a close proximity.
Resumo:
BACKGROUND Infections with Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex (MTC) are shared between livestock, wildlife and sporadically human beings. Wildlife reservoirs exist worldwide and can interfere with bovine tuberculosis (TB) eradication efforts. The Eurasian wild boar (Sus scrofa) is a MTC maintenance host in Mediterranean Iberia (Spain and Portugal). However, few systematic studies in wild boar have been carried out in Atlantic regions. We describe the prevalence, distribution, pathology and epidemiology of MTC and other mycobacteria from wild boar in Atlantic Spain. A total of 2,067 wild boar were sampled between 2008 and 2012. RESULTS The results provide insight into the current status of wild boar as MTC and Mycobacterium avium complex (MAC) hosts in temperate regions of continental Europe. The main findings were a low TB prevalence (2.6%), a low proportion of MTC infected wild boar displaying generalized TB lesions (16.7%), and a higher proportion of MAC infections (4.5%). Molecular typing revealed epidemiological links between wild boar and domestic - cattle, sheep and goat - and other wildlife - Eurasian badger (Meles meles) and red fox (Vulpes vulpes) - hosts. CONCLUSIONS This study shows that the likelihood of MTC excretion by wild boar in Atlantic habitats is much lower than in Mediterranean areas. However, wild boar provide a good indicator of MTC circulation and, given the current re-emergence of animal TB, similar large-scale surveys would be advisable in other Atlantic regions of continental Europe.
Resumo:
BACKGROUND Bovine tuberculosis (bTB) is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences. RESULTS We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1) incident cattle farms, (2) number of years of veterinary inspection of big game hunting events, (3) prevalence in wild boar, (4) number of sampled cattle, (5) persistent bTB-infected cattle farms, (6) prevalence in red deer, (7) proportion of beef farms, and (8) farms devoted to bullfighting cattle. CONCLUSIONS The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive bTB eradication success.