958 resultados para 5G Massive MIMO SCMA F-OFDM C-RAN MATLAB IOT Small Cells mmWave Beam-Forming
Resumo:
Adaptive Multiple-Input Multiple-Output (MIMO) systems achieve a much higher information rate than conventional fixed schemes due to their ability to adapt their configurations according to the wireless communications environment. However, current adaptive MIMO detection schemes exhibit either low performance (and hence low spectral efficiency) or huge computational
complexity. In particular, whilst deterministic Sphere Decoder (SD) detection schemes are well established for static MIMO systems, exhibiting deterministic parallel structure, low computational complexity and quasi-ML detection performance, there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation detection scheme. Fixed Complexity Sphere Decoding (FSD) and Real-Values FSD (RFSD) are modified and combined into a hybrid scheme exploited at low and medium SNR to provide the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, BChase and Decision Feedback (DFE) schemes are exploited in the high SNR regions. This algorithm provides the facility to balance the detection complexity with BER performance with compatible information rate in dynamic, adaptive MIMO communications
environments.
Resumo:
Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).
Resumo:
This paper introduces some novel upper and lower bounds on the achievable sum rate of multiple-input multiple-output (MIMO) systems with zero-forcing (ZF) receivers. The presented bounds are not only tractable but also generic since they apply for different fading models of interest, such as uncorrelated/ correlated Rayleigh fading and Ricean fading. We further formulate a new relationship between the sum rate and the first negative moment of the unordered eigenvalue of the instantaneous correlation matrix. The derived expressions are explicitly compared with some existing results on MIMO systems operating with optimal and minimum mean-squared error (MMSE) receivers. Based on our analytical results, we gain valuable insights into the implications of the model parameters, such as the number of antennas, spatial correlation and Ricean-K factor, on the sum rate of MIMO ZF receivers. © 2011 IEEE.
Resumo:
We analyze the effect of different pulse shaping filters on the orthogonal frequency division multiplexing (OFDM) based wireless local area network (LAN) systems in this paper. In particular, the performances of the square root raised cosine (RRC) pulses with different rolloff factors are evaluated and compared. This work provides some guidances on how to choose RRC pulses in practical WLAN systems, e.g., the selection of rolloff factor, truncation length, oversampling rate, quantization levels, etc.
Resumo:
Energy in today's short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence,purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44%.
Resumo:
In this paper, we propose general-order transmit antenna selection to enhance the secrecy performance of multiple-input–multiple-output multieavesdropper channels with outdated channel state information (CSI) at the transmitter. To evaluate the effect of the outdated CSI on the secure transmission of the system, we investigate the secrecy performance for two practical scenarios, i.e., Scenarios I and II, where the eavesdropper's CSI is not available at the transmitter and is available at the transmitter, respectively. For Scenario I, we derive exact and asymptotic closed-form expressions for the secrecy outage probability in Nakagami- m fading channels. In addition, we also derive the probability of nonzero secrecy capacity and the \varepsilon -outage secrecy capacity, respectively. Simple asymptotic expressions for the secrecy outage probability reveal that the secrecy diversity order is reduced when the CSI is outdated at the transmitter, and it is independent of the number of antennas at each eavesdropper N_text\rm{E} , the fading parameter of the eavesdropper's channel m_text\rm{E} , and the number of eavesdroppers M . For Scenario II, we make a comprehensive analysis of the average secrecy capacity obtained by the system. Specifically, new closed-form expressions for the exact and asymptotic average secrecy capacity are derived, which are valid for general systems with an arbitrary number of antennas, number of eavesdroppers, and fading severity parameters. Resorting to these results, we also determine a high signal-to-noise ratio power offset to explicitly quantify the impact of the main c- annel and the eavesdropper's channel on the average secrecy capacity.
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M-g = -19.3 +/- 0.2, and shows an asymmetric light curve. Stringent pre-discovery limits constrain its rise time to maximum light to less than 4 d, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M-g =-18.4 +/- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN Ib 2002bj. A stringent pre-discovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of +/- 1 d. The spectra of LSQ12btw show the typical narrow He I emission lines characterizing Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved H alpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.
Resumo:
We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the Optical Gravitational Lensing Experiment-IV survey, and spectroscopically followed by Public ESO Spectroscopic Survey of Transient Objects (PESSTO) at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 245 6203.8 +/- 4.0. The rise time to the I-band light-curve maximum is about two weeks. The object reaches the peak absolute magnitude M-I = -19.65 +/- 0.19 on JD = 245 6218.1 +/- 1.8. After maximum, the light curve declines for about 25 d with a rate of 4 mag (100 d)(-1). The symmetric I-band peak resembles that of canonical Type Ib/c supernovae (SNe), whereas SNe Ibn usually exhibit asymmetric and narrower early-time light curves. Since 25 d past maximum, the light curve flattens with a decline rate slower than that of the Co-56-Fe-56 decay, although at very late phases it steepens to approach that rate. However, other observables suggest that the match with the Co-56 decay rate is a mere coincidence, and the radioactive decay is not the main mechanism powering the light curve of OGLE-2012-SN-006. An early-time spectrum is dominated by a blue continuum, with only a marginal evidence for the presence of He I lines marking this SN type. This spectrum shows broad absorptions bluewards than 5000 angstrom, likely O II lines, which are similar to spectral features observed in superluminous SNe at early epochs. The object has been spectroscopically monitored by PESSTO from 90 to 180 d after peak, and these spectra show the typical features observed in a number of SN 2006jc-like events, including a blue spectral energy distribution and prominent and narrow (v(FWHM) approximate to 1900 km s(-1)) He I emission lines. This suggests that the ejecta are interacting with He-rich circumstellar material. The detection of broad (10(4) km s(-1)) O I and Ca II features likely produced in the SN ejecta (including the [OI] lambda lambda 6300,6364 doublet in the latest spectra) lends support to the interpretation of OGLE-2012-SN-006 as a core-collapse event.
Resumo:
We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M-R = -18.86 +/- 0.21. Its early light curve shows similarities with normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs, the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double peak. The absolute magnitude at discovery is similar to that of the second peak (M-R = -18.59 +/- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are clearly detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectrophotometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.