945 resultados para vehicle trajectory data
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
The dissertation titled "Driver Safety in Far-side and Far-oblique Crashes" presents a novel approach to assessing vehicle cockpit safety by integrating Human Factors and Applied Mechanics. The methodology of this approach is aimed at improving safety in compact mobile workspaces such as patrol vehicle cockpits. A statistical analysis performed using Michigan state's traffic crash data to assess various contributing factors that affect the risk of severe driver injuries showed that the risk was greater for unrestrained drivers (OR=3.38, p<0.0001) and for incidents involving front and far-side crashes without seatbelts (OR=8.0 and 23.0 respectively, p<0.005). Statistics also showed that near-side and far-side crashes pose similar threat to driver injury severity. A Human Factor survey was conducted to assess various Human-Machine/Human-Computer Interaction aspects in patrol vehicle cockpits. Results showed that tasks requiring manual operation, especially the usage of laptop, would require more attention and potentially cause more distraction. A vehicle survey conducted to evaluate ergonomics-related issues revealed that some of the equipment was in airbag deployment zones. In addition, experiments were conducted to assess the effects on driver distraction caused by changing the position of in-car accessories. A driving simulator study was conducted to mimic HMI/HCI in a patrol vehicle cockpit (20 subjects, average driving experience = 5.35 years, s.d. = 1.8). It was found that the mounting locations of manual tasks did not result in a significant change in response times. Visual displays resulted in response times less than 1.5sec. It can also be concluded that the manual task was equally distracting regardless of mounting positions (average response time was 15 secs). Average speeds and lane deviations did not show any significant results. Data from 13 full-scale sled tests conducted to simulate far-side impacts at 70 PDOF and 40 PDOF was used to analyze head injuries and HIC/AIS values. It was found that accelerations generated by the vehicle deceleration alone were high enough to cause AIS 3 - AIS 6 injuries. Pretensioners could mitigated injuries only in 40 PDOF (oblique) impacts but are useless in 70 PDOF impacts. Seat belts were ineffective in protecting the driver's head from injuries. Head would come in contact with the laptop during a far-oblique (40 PDOF) crash and far-side door for an angle-type crash (70 PDOF). Finite Element analysis head-laptop impact interaction showed that the contact velocity was the most crucial factor in causing a severe (and potentially fatal) head injury. Results indicate that no equipment may be mounted in driver trajectory envelopes. A very narrow band of space is left in patrol vehicles for installation of manual-task equipment to be both safe and ergonomic. In case of a contact, the material stiffness and damping properties play a very significant role in determining the injury outcome. Future work may be done on improving the interiors' material properties to better absorb and dissipate kinetic energy of the head. The design of seat belts and pretensioners may also be seen as an essential aspect to be further improved.
Resumo:
To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.
Resumo:
The vulvar intraepithelial neoplasia (VIN) is a rare chronic skin condition that may progress to an invasive carcinoma of the vulva. Major issues affecting women's health were occurring symptoms, negative influences on sexuality, uncertainty concerning the illness progression and changes in the body image. Despite this, there is little known about the lived experiences of the illness trajectory. Therefore, the aim of this study was to describe the experiences of women with VIN during the illness trajectory. In a secondary data analysis of the foregoing qualitative study we analysed eight narrative interviews with women with VIN by using thematic analysis in combination with critical hermeneutics. Central for these women during their course of illness was a sense of "Hope and Fear". This constitutive pattern reflects the fear of recurrence but also the trust in healing. The eight narratives showed women's experiences during their course of illness occurred in five phases: "there is something unknown"; "one knows, what IT is"; "IT is treated and should heal"; "IT has effects on daily life"; "meanwhile it works". Women's experiences were particularly influenced by the feeling of "embarrassment" and by "dealing with professionals". Current care seems to lack adequate support for women with VIN to manage these phases. We suggest, based on our study and the international literature, that new models of counselling and providing information need to be developed and evaluated.
Resumo:
The authors examined age differences in shame, guilt, and 2 forms of pride (authentic and hubristic) from age 13 years to age 89 years, using cross-sectional data from 2,611 individuals. Shame decreased from adolescence into middle adulthood, reaching a nadir around age 50 years, and then increased in old age. Guilt increased from adolescence into old age, reaching a plateau at about age 70 years. Authentic pride increased from adolescence into old age, whereas hubristic pride decreased from adolescence into middle adulthood, reaching a minimum around age 65 years, and then increased in old age. On average, women reported experiencing more shame and guilt; Blacks reported experiencing less shame and Asians more hubristic pride than other ethnicities. Across the life span, shame and hubristic pride tended to be negatively related to psychological well-being, and shame-free guilt and authentic pride showed positive relations with well-being. Overall, the findings support the maturity principle of personality development and suggest that as people age they become more prone to experiencing psychologically adaptive self-conscious emotions, such as guilt and authentic pride, and less prone to experiencing psychologically maladaptive ones, such as shame and hubristic pride.
Resumo:
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.
Resumo:
Knowles, Persico, and Todd (2001) develop a model of police search and offender behavior. Their model implies that if police are unprejudiced the rate of guilt should not vary across groups. Using data from Interstate 95 in Maryland, they find equal guilt rates for African-Americans and whites and conclude that the data is not consistent with racial prejudice against African-Americans. This paper generalizes the model of Knowles, Persico, and Todd by accounting for the fact that potential offenders are frequently not observed by the police and by including two different levels of offense severity. The paper shows that for African-American males the data is consistent with prejudice against African-American males, no prejudice, and reverse discrimination depending on the form of equilibria that exists in the economy. Additional analyses based on stratification by type of vehicle and time of day were conducted, but did not shed any light on the form of equilibria that best represents the situation in Maryland during the sample period.
Resumo:
The joint modeling of longitudinal and survival data is a new approach to many applications such as HIV, cancer vaccine trials and quality of life studies. There are recent developments of the methodologies with respect to each of the components of the joint model as well as statistical processes that link them together. Among these, second order polynomial random effect models and linear mixed effects models are the most commonly used for the longitudinal trajectory function. In this study, we first relax the parametric constraints for polynomial random effect models by using Dirichlet process priors, then three longitudinal markers rather than only one marker are considered in one joint model. Second, we use a linear mixed effect model for the longitudinal process in a joint model analyzing the three markers. In this research these methods were applied to the Primary Biliary Cirrhosis sequential data, which were collected from a clinical trial of primary biliary cirrhosis (PBC) of the liver. This trial was conducted between 1974 and 1984 at the Mayo Clinic. The effects of three longitudinal markers (1) Total Serum Bilirubin, (2) Serum Albumin and (3) Serum Glutamic-Oxaloacetic transaminase (SGOT) on patients' survival were investigated. Proportion of treatment effect will also be studied using the proposed joint modeling approaches. ^ Based on the results, we conclude that the proposed modeling approaches yield better fit to the data and give less biased parameter estimates for these trajectory functions than previous methods. Model fit is also improved after considering three longitudinal markers instead of one marker only. The results from analysis of proportion of treatment effects from these joint models indicate same conclusion as that from the final model of Fleming and Harrington (1991), which is Bilirubin and Albumin together has stronger impact in predicting patients' survival and as a surrogate endpoints for treatment. ^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
This cross-sectional analysis of the data from the Third National Health and Nutrition Examination Survey was conducted to determine the prevalence and determinants of asthma and wheezing among US adults, and to identify the occupations and industries at high risk of developing work-related asthma and work-related wheezing. Separate logistic models were developed for physician-diagnosed asthma (MD asthma), wheezing in the previous 12 months (wheezing), work-related asthma and work-related wheezing. Major risk factors including demographic, socioeconomic, indoor air quality, allergy, and other characteristics were analyzed. The prevalence of lifetime MD asthma was 7.7% and the prevalence of wheezing was 17.2%. Mexican-Americans exhibited the lowest prevalence of MD asthma (4.8%; 95% confidence interval (CI): 4.2, 5.4) when compared to other race-ethnic groups. The prevalence of MD asthma or wheezing did not vary by gender. Multiple logistic regression analysis showed that Mexican-Americans were less likely to develop MD asthma (adjusted odds ratio (ORa) = 0.64, 95%CI: 0.45, 0.90) and wheezing (ORa = 0.55, 95%CI: 0.44, 0.69) when compared to non-Hispanic whites. Low education level, current and past smoking status, pet ownership, lifetime diagnosis of physician-diagnosed hay fever and obesity were all significantly associated with MD asthma and wheezing. No significant effect of indoor air pollutants on asthma and wheezing was observed in this study. The prevalence of work-related asthma was 3.70% (95%CI: 2.88, 4.52) and the prevalence of work-related wheezing was 11.46% (95%CI: 9.87, 13.05). The major occupations identified at risk of developing work-related asthma and wheezing were cleaners; farm and agriculture related occupations; entertainment related occupations; protective service occupations; construction; mechanics and repairers; textile; fabricators and assemblers; other transportation and material moving occupations; freight, stock and material movers; motor vehicle operators; and equipment cleaners. The population attributable risk for work-related asthma and wheeze were 26% and 27% respectively. The major industries identified at risk of work-related asthma and wheeze include entertainment related industry; agriculture, forestry and fishing; construction; electrical machinery; repair services; and lodging places. The population attributable risk for work-related asthma was 36.5% and work-related wheezing was 28.5% for industries. Asthma remains an important public health issue in the US and in the other regions of the world. ^
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.