802 resultados para time, team, task and context
Resumo:
This study investigated movement synchronization of players within and between teams during competitive association football performance. Cluster phase analysis was introduced as a method to assess synchronies between whole teams and between individual players with their team as a function of time, ball possession and field direction. Measures of dispersion (SD) and regularity (sample entropy – SampEn – and cross sample entropy – Cross-SampEn) were used to quantify the magnitude and structure of synchrony. Large synergistic relations within each professional team sport collective were observed, particularly in the longitudinal direction of the field (0.89 ± 0.12) compared to the lateral direction (0.73 ± 0.16, p < .01). The coupling between the group measures of the two teams also revealed that changes in the synchrony of each team were intimately related (Cross-SampEn values of 0.02 ± 0.01). Interestingly, ball possession did not influence team synchronization levels. In player–team synchronization, individuals tended to be coordinated under near in-phase modes with team behavior (mean ranges between −7 and 5° of relative phase). The magnitudes of variations were low, but more irregular in time, for the longitudinal (SD: 18 ± 3°; SampEn: 0.07 ± 0.01), compared to the lateral direction (SD: 28 ± 5°; SampEn: 0.06 ± 0.01, p < .05) on-field. Increases in regularity were also observed between the first (SampEn: 0.07 ± 0.01) and second half (SampEn: 0.06 ± 0.01, p < .05) of the observed competitive game. Findings suggest that the method of analysis introduced in the current study may offer a suitable tool for examining team’s synchronization behaviors and the mutual influence of each team’s cohesiveness in competing social collectives.
Resumo:
The team functioning assessment tool (TFAT) has been shown to be a reliable behavioral marker tool for assessing nontechnical skills that are critical to the success of ward-based healthcare teams. This paper aims to refine and shorten the length of the TFAT to improve usability, and establish its reliability and construct validity. Psychometric testing based on 110 multidisciplinary healthcare teams demonstrated that the TFAT is a reliable and valid tool for measuring team members’ nontechnical skills in regards to Clinical Planning, Executive Tasks, and Team Functioning. Providing support for concurrent validity, high TFAT ratings were predicted by low levels of organizational constraints and high levels of group potency. There was also partial support for the negative relationships between time pressure, leadership ambiguity, and TFAT ratings. The paper provides a discussion on the applicability of the tool for assessing multidisciplinary healthcare team functioning in the context of improving team effectiveness and patient safety for ward-based hospital teams.
Resumo:
Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.
Resumo:
Background Situational driving factors, including fatigue, distraction, inattention and monotony, are recognised killers in Australia, contributing to an estimated 40% of fatal crashes and 34% of all crashes . More often than not the main contributing factor is identified as fatigue, yet poor driving performance has been found to emerge early in monotonous conditions, independent of fatigue symptoms and time on task. This early emergence suggests an important role for monotony. However, much road safety research suggests that monotony is solely a task characteristic that directly causes fatigue and associated symptoms and there remains an absence of consistent evidence explaining the relationship. Objectives We report an experimental study designed to disentangle the characteristics and effects of monotony from those associated with fatigue. Specifically, we examined whether poor driving performance associated with hypovigilance emerges as a consequence of monotony, independent of fatigue. We also examined whether monotony is a multidimensional construct, determined by environmental characteristics and/or task demands that independently moderate sustained attention and associated driving performance. Method Using a driving simulator, participants completed four, 40 minute driving scenarios. The scenarios varied in the degree of monotony as determined by the degree of variation in road design (e.g., straight roads vs. curves) and/or road side scenery. Fatigue, as well as a number of other factors known to moderate vigilance and driving performance, was controlled for. To track changes across time, driving performance was assessed in five minute time periods using a range of behavioural, subjective and physiological measures, including steering wheel movements, lane positioning, electroencephalograms, skin conductance, and oculomotor activity. Results Results indicate that driving performance is worse in monotonous driving conditions characterised by low variability in road design. Critically, performance decrements associated with monotony emerge very early, suggesting monotony effects operate independent of fatigue. Conclusion Monotony is a multi-dimensional construct where, in a driving context, roads containing low variability in design are monotonous and those high in variability are non-monotonous. Importantly, low variability in road side scenery does not appear to exacerbate monotony or associated poor performance. However, high variability in road side scenery can act as a distraction and impair sustained attention and poor performance when driving on monotonous roads. Furthermore, high sensation seekers seem to be more susceptible to distraction when driving on monotonous roads. Implications of our results for the relationship between monotony and fatigue, and the possible construct-specific detection methods in a road safety context, will be discussed.
Resumo:
Child behaviour management is crucial to successful treatment of atopic dermatitis. This study tested relationships between parents’ self-efficacy, outcome expectations, and self-reported task performance when caring for a child with atopic dermatitis. Using a cross-sectional study design, a community-based convenience sample of 120 parents participated in pilot-testing of the Child Eczema Management Questionnaire - a self-administered questionnaire which appraises parents’ self-efficacy, outcome expectations, and self-reported task performance when managing atopic dermatitis. Overall, parents’ self-reported confidence and success with performing routine management tasks was greater than that for managing their child’s symptoms and behaviour. Therewas a positive relationship between time since diagnosis and self-reported performance of routine management tasks; however, success with managing the child’s symptoms and behaviour did not improve with illness duration. Longer time since diagnosis was also associated with more positive outcome expectations of performing tasks that involved others in the child’s care (i.e. healthcare professionals, or the child themselves). This study provides the foundation for further research examining relationships between child, parent, and family psychosocial variables, parent management of atopic dermatitis, and child health outcomes. Improved understanding of these relationships will assist healthcare providers to better support parents and families caring for children with atopic dermatitis. KEYWORDS
Resumo:
Educating responsive graduates. Graduate competencies include reliability, communication skills and ability to work in teams. Students using Collaborative technologies adapt to a new working environment, working in teams and using collaborative technologies for learning. Collaborative Technologies were used not simply for delivery of learning but innovatively to supplement and enrich research-based learning, providing a space for active engagement and interaction with resources and team. This promotes the development of responsive ‘intellectual producers’, able to effectively communicate, collaborate and negotiate in complex work environments. Exploiting technologies. Students use ‘new’ technologies to work collaboratively, allowing them to experience the reality of distributed workplaces incorporating both flexibility and ‘real’ time responsiveness. Students are responsible and accountable for individual and group work contributions in a highly transparent and readily accessible workspace. This experience provides a model of an effective learning tool. Navigating uncertainty and complexity. Collaborative technologies allows students to develop critical thinking and reflective skills as they develop a group product. In this forum students build resilience by taking ownership and managing group work, and navigating the uncertainties and complexities of group dynamics as they constructively and professionally engage in team dialogue and learn to focus on the goal of the team task.
Resumo:
A longitudinal field experiment examined sports fans’ attitudes toward favored- and opposing-team sponsors across time. Measurements at five timepoints showed fans’ attitudes were more positive toward their favored-team sponsors, but that attitudes improved across time toward both favored-team sponsors and opposing-team sponsors. This occurred regardless of intensity of fan identification.
Resumo:
Long-term unemployment of older people can have severe consequences for individuals, communities and ultimately economies, and is therefore a serious concern in countries with an ageing population. However, the interplay of chronological age and other individual difference characteristics in predicting older job seekers' job search is so far not well understood. This study investigated relationships among age, proactive personality, occupational future time perspective (FTP) and job search intensity of 182 job seekers between 43 and 77 years in Australia. Results were mostly consistent with expectations based on a combination of socio-emotional selectivity theory and the notion of compensatory psychological resources. Proactive personality was positively related to job search intensity and age was negatively related to job search intensity. Age moderated the relationship between proactive personality and job search intensity, such that the relationship was stronger at higher compared to lower ages. One dimension of occupational FTP (perceived remaining time left in the occupational context) mediated this moderating effect, but not the overall relationship between age and job search intensity. Implications for future research, including the interplay of occupational FTP and proactive personality, and some tentative practical implications are discussed.
Resumo:
The authors adapted the concept of future time perspective (FTP) to the work context and examined its relationships with age and work characteristics (job complexity and control). Structural equation modeling of data from 176 employees of various occupations showed that age is negatively related to 2 distinct dimensions of occupational FTP: remaining time and remaining opportunities. Work characteristics (job complexity and control) were positively related to remaining opportunities and moderated the relationship between age and remaining opportunities, such that the relationship became weaker with increasing levels of job complexity and control.
Resumo:
Background: A paradigm shift in educational policy to create problem solvers and critical thinkers produced the games concept approach (GCA) in Singapore's Revised Syllabus for Physical Education (1999). A pilot study (2001) conducted on 11 primary school student teachers (STs) using this approach identified time management and questioning as two of the major challenges faced by novice teachers. Purpose: To examine the GCA from three perspectives: structure—lesson form in terms of teacher-time and pupil-time; product—how STs used those time fractions; and process—the nature of their questioning (type, timing, and target). Participants and setting: Forty-nine STs from three different PETE cohorts (two-year diploma, four-year degree, two-year post-graduate diploma) volunteered to participate in the study conducted during the penultimate week of their final practicum in public primary and secondary schools. Intervention: Based on the findings of the pilot study, PETE increased the emphasis on GCA content specific knowledge and pedagogical procedures. To further support STs learning to actualise the GCA, authentic micro-teaching experiences that were closely monitored by faculty were provided in schools nearby. Research design: This is a descriptive study of time-management and questioning strategies implemented by STs on practicum. Each lesson was segmented into a number of sub-categories of teacher-time (organisation, demonstration and closure) and pupil-time (practice time and game time). Questions were categorised as knowledge, technical, tactical or affective. Data collection: Each ST was video-taped teaching a GCA lesson towards the end of their final practicum. The STs individually determined the timing of the data collection and the lesson to be observed. Data analysis: Each lesson was segmented into a number of sub-categories of both teacher- and pupil-time. Duration recording using Noldus software (Observer 4.0) segmented the time management of different lesson components. Questioning was coded in terms of type, timing and target. Separate MANOVAs were used to measure the difference between programmes and levels (primary and secondary) in relation to time-management procedures and questioning strategies. Findings: No differences emerged between the programmes or levels in their time-management or questioning strategies. Using the GCA, STs generated more pupil time (53%) than teacher time (47%). STs at the primary level provided more technical practice, and those in secondary schools more small-sided game play. Most questions (58%) were asked during play or practice but were substantially low-order involving knowledge or recall (76%) and only 6.7% were open-ended or divergent and capable of developing tactical awareness. Conclusions: Although STs are delivering more pupil time (practice and game) than teacher-time, the lesson structure requires further fine-tuning to extend the practice task beyond technical drills. Many questions are being asked to generate knowledge about games but lack sufficient quality to enhance critical thinking and tactical awareness, as the GCA intends.
Resumo:
Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conference(a). The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshops(b), which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
This paper investigates how the efficiency and robustness of a skilled rhythmic task compete against each other in the control of a bimanual movement. Human subjects juggled a puck in 2D through impacts with two metallic arms, requiring rhythmic bimanual actuation. The arms kinematics were only constrained by the position, velocity and time of impacts while the rest of the trajectory did not influence the movement of the puck. In order to expose the task robustness, we manipulated the task context in two distinct manners: the task tempo was assigned at four different values (hence manipulating the time available to plan and execute each impact movement individually); and vision was withdrawn during half of the trials (hence reducing the sensory inflows). We show that when the tempo was fast, the actuation was rhythmic (no pause in the trajectory) while at slow tempo, the actuation was discrete (with pause intervals between individual movements). Moreover, the withdrawal of visual information encouraged the rhythmic behavior at the four tested tempi. The discrete versus rhythmic behavior give different answers to the efficiency/robustness trade-off: discrete movements result in energy efficient movements, while rhythmic movements impact the puck with negative acceleration, a property preserving robustness. Moreover, we report that in all conditions the impact velocity of the arms was negatively correlated with the energy of the puck. This correlation tended to stabilize the task and was influenced by vision, revealing again different control strategies. In conclusion, this task involves different modes of control that balance efficiency and robustness, depending on the context. © 2008 Springer-Verlag.
Resumo:
The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.
Resumo:
The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.