989 resultados para the southern Yellow Sea surface sediment
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.
Resumo:
The concentration of C37-C39 long-chain alkenones and alkenes were determined in surface water and surface sediment samples from the subpolar waters of the Southern Ocean. Distributions of these compounds were similar in both sample sets indicating little differential degradation between or within compound classes. The relative amounts of the tri- to tetra-unsaturated C37 alkenones increased with increasing temperature for temperatures below 6°C similar to the di- and tri-unsaturated C37 alkenones. The C37 di-, tri-, and tetra-unsaturated methyl alkenones are used in paleotemperature calculations via the U37K and the U37K ratios. In these datasets, the relative abundances of the C37:2 and the C37.3 alkenones as a proportion of the total C37 alkenones were opposite and strongly related to temperature (the latter with more scatter), but the abundance of the C37:4 alkenone showed no relationship with temperature. The original definition of U37K includes the abundance of 37:4 in both the numerator and denominator, and thus it is perhaps not surprising that there is considerable scatter in the values obtained for U37K at low temperatures. Of the two, we suggest that U37K' is the better parameter for use in paleotemperature estimations, even in cold locations. U37K' values in the sediments fall on virtually the same regression line obtained for the water column samples of Sikes and Volkman (1993, doi:10.1016/0016-7037(93)90120-L), indicating that their calibration is suitable for use in Southern Ocean sediments. The comparison of water column data with sedimentary temperature estimates suggests that the alkenone distributions are dominated by contributions from the summer when the biomass of Emiliania huxleyi and presumably flux to the sediment, is expected to be high.
Resumo:
We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.
Resumo:
TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) is a sea surface temperature (SST) proxy based on the distribution of archaeal isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs). In this study, we appraise the applicability of TEX86 and TEX86L in subpolar and polar regions using surface sediments. We present TEX86 and TEX86L data from 160 surface sediment samples collected in the Arctic, the Southern Ocean and the North Pacific. Most of the SST estimates derived from both TEX86 and TEX86L are anomalously high in the Arctic, especially in the vicinity of Siberian river mouths and the sea ice margin, plausibly due to additional archaeal contributions linked to terrigenous input. We found unusual GDGT distributions at five sites in the North Pacific. High GDGT-0/crenarchaeol and GDGT-2/crenarchaeol ratios at these sites suggest a substantial contribution of methanogenic and/or methanotrophic archaea to the sedimentary GDGT pool here. Apart from these anomalous findings, TEX86 and TEX86L values in the surface sediments from the Southern Ocean and the North Pacific do usually vary with overlaying SSTs. In these regions, the sedimentary TEX86-SST relationship is similar to the global calibration, and the derived temperature estimates agree well with overlaying annual mean SSTs at the sites. However, there is a systematic offset between the regional TEX86L-SST relationships and the global calibration. At these sites, temperature estimates based on the global TEX86L calibration are closer to summer SSTs than annual mean SSTs. This finding suggests that in these subpolar settings a regional TEX86L calibration may be a more suitable equation for temperature reconstruction than the global calibration.
Resumo:
Planktic foraminiferal faunas and modern analogue technique estimates of sea surface temperature (SST) for the last 1 million years (Myr) are compared between core sites to the north (ODP 1125, 178 faunas) and south (DSDP 594, 374 faunas) of the present location of the Subtropical Front (STF), east of New Zealand. Faunas beneath cool subtropical water (STW) north of the STF are dominated by dextral Neogloboquadrina pachyderma, Globorotalia inflata, and Globigerina bulloides, whereas faunas to the south are strongly dominated by sinistral N. pachyderma (80-95% in glacials), with increased G. bulloides (20-50%) and dextral N. pachyderma (15-50%) in interglacials (beneath Subantarctic Water, or SAW). Canonical correspondence analysis indicates that at both sites, SST and related factors were the most important environmental influences on faunal composition. Greater climate-related faunal fluctuations occur in the south. Significant faunal changes occur through time at both sites, particularly towards the end of the mid-Pleistocene climate transition, MIS18-15 (e.g., decline of Globorotalia crassula in STW, disappearance of Globorotalia puncticulata in SAW), and during MIS8-5. Interglacial SST estimates in the north are similar to the present day throughout the last 1 Myr. To the south, interglacial SSTs are more variable with peaks 4-7 °C cooler than present through much of the early and middle Pleistocene, but in MIS11, MIS5.5, and early MIS1, peaks are estimated to have been 2-4 °C warmer than present. These high temperatures are attributed to southward spread of the STF across the submarine Chatham Rise, along which the STF appears to have been dynamically positioned throughout most of the last 1 Myr. For much of the last 1 Myr, glacial SST estimates in the north were only 1-2 °C cooler than the present interglacial, except in MIS16, MIS8, MIS6, and MIS4-2 when estimates are 4-7 °C cooler. These cooler temperatures are attributed to jetting of SAW through the Mernoo Saddle (across the Chatham Rise) and/or waning of the STW current. To the south, glacial SST estimates were consistently 10-11 °C cooler than present, similar to temperatures and faunas currently found in the vicinity of the Polar Front. One interpretation is that these cold temperatures reflect thermocline changes and increased Circumpolar Surface Water spinning off the Subantarctic Front as an enhanced Bounty Gyre along the south side of the Chatham Rise. For most of the last 1 Myr, the temperature gradient across the STF has been considerably greater than the present 4 °C. During glacial episodes, the STF in this region did not migrate northwards, but instead there was an intensification of the temperature gradient across it (interglacials 4-11 °C; glacials 8-14 °C).
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.
Resumo:
This study subdivides the Weddell Sea, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis uses 28 environmental variables for the sea surface, 25 variables for the seabed and 9 variables for the analysis between surface and bottom variables. The data were taken during the years 1983-2013. Some data were interpolated. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared for the identification of the most reasonable method. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested. For the seabed 8 and 12 clusters were identified as reasonable numbers for clustering the Weddell Sea. For the sea surface the numbers 8 and 13 and for the top/bottom analysis 8 and 3 were identified, respectively. Additionally, the results of 20 clusters are presented for the three alternatives offering the first small scale environmental regionalization of the Weddell Sea. Especially the results of 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.
Resumo:
Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.
Resumo:
The initiation of the Benguela upwelling has been dated to the late Miocene, but estimates of its sea surface temperature evolution are not available. This study presents data from Ocean Drilling Program (ODP) Site 1085 recovered from the southern Cape Basin. Samples of the middle Miocene to Pliocene were analyzed for alkenone-based (UK'37, SSTUK) and glycerol dialkyl glycerol tetraether (GDGT) based (TEX86, TempTEX) water temperature proxies. In concordance with global cooling during the Miocene, SSTUK and TempTEX exhibit a decline of about 8°C and 16°C, respectively. The temperature trends suggest an inflow of cold Antarctic waters triggered by Antarctic ice sheet expansion and intensification of Southern Hemisphere southeasterly winds. A temperature offset between both proxies developed with the onset of upwelling, which can be explained by differences in habitat: alkenone-producing phytoplankton live in the euphotic zone and record sea surface temperatures, while GDGT-producing Thaumarchaeota are displaced to colder subsurface waters in upwelling-influenced areas and record subsurface water temperatures. We suggest that variations in subsurface water temperatures were driven by advection of cold Antarctic waters and thermocline adjustments that were due to changes in North Atlantic deep water formation. A decline in surface temperatures, an increased offset between temperature proxies, and an increase in primary productivity suggest the establishment of the Benguela upwelling at 10 Ma. During the Messinian Salinity Crisis, between 7 and 5 Ma, surface and subsurface temperature estimates became similar, likely because of a strong reduction in Atlantic overturning circulation, while high total organic carbon contents suggest a "biogenic bloom." In the Pliocene the offset between the temperature estimates and the cooling trend was reestablished.
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.
Resumo:
Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.
Resumo:
Thirty-two surface sediment samples from the Southern Ocean (eastern Atlantic sector), between the Subtropical Front and the Weddell Gyre, were investigated to provide information on the distribution of modern organic-walled dinoflagellate cysts in relation to the oceanic fronts of the Antarctic Circumpolar Current (ACC). A clearly distinguishable distribution pattern was observed in relation to the water masses and fronts of the ACC. The dinoflagellate cysts of species characteristic of open oceanic environments, such as Impagidinium species, are highly abundant around the Subtropical Front, whereas south of this front, cosmopolitan species such as Nematosphaeropsis labyrinthus and the cysts of Protoceratium reticulatum characterise the transition from subtropical to subantarctic surface waters. The subantarctic surface waters are dominated by the cysts of heterotrophic dinoflagellates, such as Protoperidinium spp. and Selenopemphix antarctica. The cysts of Protoperidinium spp. form the dominant part of the assemblages around the Antarctic Polar Front, whereas S. antarctica concentrations increase further to the south. The presence of S. antarctica in sediments of the Maud Rise, a region of seasonal sea-ice cover, reflects its tolerance for low temperatures and sea-ice cover. A previously undescribed species, Cryodinium meridianum gen. nov. sp. nov., has a restricted distribution pattern between the Antarctic Polar Front and the ACC-Weddell Gyre Boundary.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.