973 resultados para superparamagnetic iron oxide nanoparticle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of 40SiO(2)center dot 30Na(2)O center dot 1Al(2)O(3)center dot(29 - x)B2O3 center dot xFe(2)O(3) (mol%), with 0.0 <= x <= 17.5, were prepared by the fusion method and investigated by electron paramagnetic resonance (EPR), optical absorption (OA) and Mossbauer spectroscopy (MS). The EPR spectra of the as-synthesized samples exhibit two well-defined EPR signals around g = 4.27 and g = 2.01 and a visible EPR shoulder around g = 6.4, assigned to isolated Fe3+ ion complexes (g = 4.27 and g = 6.4) and Fe3+-based clusters (g = 2.01). Analyses of both EPR line intensity and line width support the model picture of Fe3+-based clusters built in from two sources of isolated ions, namely Fe2+ and Fe3+; the ferrous ion being used to build in iron-based clusters at lower x-content (below about x = 2.5%) whereas the ferric ion is used to build in iron-based clusters at higher x-content (above about x = 2.5%). The presence of Fe2+ ions incorporated within the glass template is supported by OA data with a strong band around 1100 nm due to the spin-allowed E-5(g)-T-5(2g) transition in an octahedral coordination with oxygen. Additionally, Mossbauer data (isomer shift and quadrupole splitting) confirm incorporation of both Fe2+ and Fe3+ ions within the template, more likely in tetrahedral-like environments. We hypothesize that ferrous ions are incorporated within the glass template as FeO4 complex resulting from replacing silicon in non-bridging oxygen (SiO3O-) sites whereas ferric ions are incorporated as FeO4 complex resulting from replacing silicon in bridging-like oxygen silicate groups (SiO4). (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesys reports the study of a HGMS (High GradientMagnetic Separation) process for the treatment of industrialwastewaters that considers an assisted chemical-physical pre-treatment for the removal of heavy metals through the bound by adsorption with added iron-oxide particulate matter (hematite). The considered filter, constituted by ferromagnetic stainless steel wool and permanent magnets, is studied with a new approach based on a statistical analysis that requires the study of the trajectories of the particles. Experimental activity on a laboratory device has been carried out in order to test the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Vergesellschaftung und Bindungsform von Arsen in Düngekalk wurde durch chemische und mineralogische Analysen sowie XANES/EXAFS-Messungen untersucht. Die durch-schnittliche As-Konzentration im Düngekalk (70 mg/kg) überschreitet den Grenzwert der DüMV (40 mg/kg). Arsen ist in Mn- (Romanechit) und Fe-Dendriten (Goethit, Ferrihydrit) angereichert. Seine Oxidationsstufe ist jeweils 5+. µ-EXAFS-Untersuchungen ergaben Hin-weise auf zweizähnige und einzähnige mononukleare Durchdringungskomplexe mit Eisen-oxid. Das Mobilisierungsverhalten von Arsen wurde durch sequentielle Extraktion des Dün-gekalks und Mobilisierungsversuche mit wassergesättigtem Boden untersucht. Die Lösung erfolgte vorwiegend im dritten Extraktionsschritt gemeinsam mit kristallinen Eisenoxiden. Unter moderat anoxischen Bedingungen war im Boden keine zusätzliche Mobilisierung von Arsen aus dem Düngekalk nachweisbar. Erhöhte As-Konzentrationen und As3+-Anteile im Porenwasser traten bei niedrigem Eh unabhängig von Kalkzugabe auf. Eine Kopplung des Arsen-Grenzwerts an den Eisenoxidgehalt erscheint sinnvoll. Ein Messaufbau für Mikro-XAS Imaging wurde in Betrieb genommen. Er ermöglicht die si-multane Erfassung einer Probenfläche von 26,6×6,6 mm² wahlweise im Transmissions- oder Fluoreszenzmodus mit der räumlichen Auflösung 52×52 µm² durch eine CCD-Kamera. Zur Datenverarbeitung wurden IDL-Programme sowie die Fernerkundungssoftware ENVI ver-wendet. Die Messergebnisse zeigen weniger Störungen und Rauschen als die Ergebnisse frü-herer Messungen mit einem Prototyp. Die Ergebnisse und Erfahrungen der Messungen liefern Hinweise für die weitere erfolgreiche Nutzung des Messaufbaus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene Methoden der Synthese von Zinn(IV)oxid Nanopartikeln, deren Stabilisierung durch unterschiedliche Surfactants und der Einbau der Nanomaterialien in PMMA beschrieben und die erhaltenen Materialien charakterisiert. Die Darstellung der Zinnoxid Nanopartikel wurde über drei verschiedene Synthesewege durchgeführt: a) Polymeric Precursor Methode, b) Solvothermal-Synthese und c) säurekatalysierte Fällungsreaktion. Im Rahmen von a) konnte neben der thermodynamisch stabilen Phase von Zinn(IV)oxid ebenfalls die metastabile orthorhombische Phase synthetisiert werden. Durch eine Analyse der Pyrolysebedingungen konnte der Kristallisationsmechanismus des Zinnoxids ausgehend vom Precursor bis zur tetragonalen Phase des Zinn(IV)oxid diskutiert werden. Die Synthesemethoden b) und c) boten sich zur Darstellung von oberflächenmodifizierten Zinnoxid Nanopartikeln an. Als Surfactant benutzte man unter anderem Alkylphosphonsäuren, da eine hydrophobe Oberfläche die Dispersion in MMA ermöglichte. Abschließend wurde eine radikalische in situ-Polymerisation von MMA in Gegenwart von oberflächenmodifizierten Partikeln durchgeführt. Der erhaltene Verbundwerkstoff zeichnete sich durch eine erhöhte thermische Stabilität aufgrund weniger Strukturdefekte des Polymers aus. Durch eine Untersuchung des Polymerisationsmechanismus konnte die Wirkung der oberflächenmodifizierten Nanopartikel auf die Polymerisation veranschaulicht werden. Aufgrund der nicht homogenen Verteilung der Nanopartikel im Verbundwerkstoff konnte jedoch keine Charakterisierung der optischen Eigenschaften durchgeführt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades mesenchymal stromal cells (MSC), intriguing for their multilineage plasticity and their proliferation activity in vitro, have been intensively studied for innovative therapeutic applications. In the first project, a new method to expand in vitro adipose derived-MSC (ASC) while maintaining their progenitor properties have been investigated. ASC are cultured in the same flask for 28 days in order to allow cell-extracellular matrix and cell-cell interactions and to mimic in vivo niche. ASC cultured with this method (Unpass cells) were compared with ASC cultured under classic condition (Pass cells). Unpass and Pass cells were characterized in terms of clonogenicity, proliferation, stemness gene expression, differentiation in vitro and in vivo and results obtained showed that Unpass cells preserve their stemness and phenotypic properties suggesting a fundamental role of the niche in the maintenance of ASC progenitor features. Our data suggests alternative culture conditions for the expansion of ASC ex vivo which could increase the performance of ASC in regenerative applications. In vivo MSC tracking is essential in order to assess their homing and migration. Super-paramagnetic iron oxide nanoparticles (SPION) have been used to track MSC in vivo due to their biocompatibility and traceability by MRI. In the second project a new generation of magnetic nanoparticles (MNP) used to label MSC were tested. These MNP have been functionalized with hyperbranched poly(epsilon-lysine)dendrons (G3CB) in order to interact with membrane glycocalix of the cells avoiding their internalization and preventing any cytotoxic effects. In literature it is reported that labeling of MSC with SPION takes long time of incubation. In our experiments after 15min of incubation with G3CB-MNP more then 80% of MSC were labeled. The data obtained from cytotoxic, proliferation and differentiation assay showed that labeling does not affect MSC properties suggesting a potential application of G3CB nano-particles in regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Martian surface in January 2004 and have since collected a wealth of information about their landing sites. As part of their payload, the miniaturised Mössbauer spectrometer MIMOS II contributes to the success of the mission by identifying Iron-bearing minerals and by determining Iron oxidation states in them. The basis of this work is the data set obtained at Opportunity’s landing site at Meridiani Planum. A portion of this data set is evaluated with different methods, with the aim to thoroughly characterize lithologic components at Meridiani Planum and possible relations between them.rnMIMOS II is able to measure Mössbauer spectra at different energies simultaneously, bearing information from different sampling depths of the investigated target. The ability of depth-selective Mössbauer spectroscopy to characterize weathered surface layers is illustrated through its application to two suitable rock targets that were investigated on Mars. In both cases, an enhanced concentration of Iron oxides at the rock surface was detected, pointing to a low degree of aqueous alteration. rnThe mineral hematite (α-Fe2O3) is present in the matrix of outcrop rocks and in spherules weathering from the outcrop. Simultaneous fitting of Mössbauer spectra was applied to data sets obtained on both target types to characterize the hematite component in detail. This approach reveals that two hematite populations are present, both in the outcrop matrix as well as in spherules. The hematite component with a comparably high degree of crystallinity and/or chemical purity is present in the outcrop matrix. The investigation of hematite at Meridiani Planum has shown that simultaneous fitting is a suitable and useful method to evaluate a large, correlated set of Mössbauer spectra.rnOpportunity encountered loose, cm-sized rocks along its traverse. Based on their composition and texture, these “cobbles” can be divided into three different groups. Outcrop fragments are impact-derived ejecta from local outcrop rocks. Cobbles of meteoritic origin contain the minerals kamacite (Fe,Ni) and troilite (FeS) and exhibit high Ni contents. Melt-bearing impact breccias bear similarities to local outcrop rocks and basaltic soil, with a phase composition and texture consistent with a formation scenario involving partial melting and inclusion of small, bright outcrop clasts. rnIron meteorites on the Martian surface experience weathering through the presence of even trace amounts of water due to their metallic nature. Opportunity encountered and investigated four Iron meteorites, which exhibit evidence for physical and chemical weathering. Discontinuous coatings contain Iron oxides, pointing to the influence of limited amounts of water. rnA terrestrial analogue site for Meridiani Planum is the Rio Tinto basin in south-west Spain. With its deposits of sulfate- and iron-oxide-bearing minerals, the region provides an adequate test bed for instrumentation for future Mars missions. In-situ investigations at Rio Tinto were carried out with a special focus on the combined use of Mössbauer spectroscopy with MIMOS II and Raman spectroscopy with a field-portable instrument. The results demonstrate that the two instruments provide complementary information about investigated samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this doctoral thesis is a facile procedure, thermal decomposition, forrnthe synthesis of different types of monodisperse heterodimer M@iron oxide (M= Cu, Co, Nirnand Pt) and single ferrites, MFe2O4 (M= Cu and Co), nanoparticles. In the following chapter,rnwe study the synthesis of these monodiperse nanoparticles with the similar iron precursorrn(iron pentacarbonyl) and different transition metal precursors such as metalrnacetate/acetylacetonate/formate precursors in the presence of various surfactants and solvents.rnAccording to their decomposition temperatures and reducing condition, a specific and suitablernroute was designed for the formation of Metal@Metal oxide or MFe2O4 nanoparticlesrn(Metal/M=transition metal).rnOne of the key purposes in the formation of nanocrystals is the development of syntheticrnpathways for designing and controlling the composition, shape and size of predictedrnnanostructures. The ability to arrange different nanosized domains of metallic and magneticrnmaterials into a single heterodimer nanostructure offers an interesting direction to engineerrnthem with multiple functionalities or enhanced properties of one domain. The presence andrnrole of surfactants and solvents in these reactions result in a variety of nanocrystal shapes. Therncrystalline phase, the growth rate and the orientation of growth parameters along certainrndirections of these structures can be chemically modulated by using suitable surfactants. In allrnnovel reported heterodimer nanostructures in this thesis, initially metals were preformed andrnthen by the injection of iron precursor in appropriate temperature, iron oxide nanoparticlesrnwere started to nucleate on the top or over the surfaces of metal nanoparticles. Ternary phasesrnof spherical CuxFe3-xO4 and CoFe2O4 ferrites nanoparticles were designed to synthesis just byrnlittle difference in diffusion step with the formation of mentioned phase separated heterodimerrnnanoparticles. In order to use these magnetic nanoparticles in biomedical and catalysisrnapplications, they should be transferred into the water phase solution, therefore they werernfunctionalized by a multifunctional polymeric ligand. These functionalized nanoparticles werernstable against aggregation and precipitation in aqueous media for a long time. Magneticrnresonance imaging and catalytic reactivities are two promising applications which have beenrnutilized for these magnetic nanoparticles in this thesis.rnThis synthetic method explained in the following chapters can be extended to the synthesis ofrnother heterostructured nanomaterials such as Ni@MnO or M@M@iron oxide (M=transitionrnmetal) or to use these multidomain particles as building blocks for higher order structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung eines nichtviralen, effizienten Transfektionsmittels mit einer Kern-Schale-Struktur in der Größenordnung bis 100 nm. Dafür werden magnetische, negativ geladene Eisenoxid-Nanopartikel mittels Thermolyse mit einem Durchmesser von 17 nm synthetisiert und in Wasser überführt. Diese Nanopartikel bilden den Kern des Erbgut-Trägers und werden mittels Layer-by-Layer –Verfahren (LbL) mit geladenen Polymeren, den bioabbaubaren Makromolekülen Poly-L-Lysin und Heparin, beschichtet. Dafür wird zunächst eine geeignete Apparatur aufgebaut. Diese wird zur Herstellung von Kern-Schale-Strukturen mit fünf Polyelektrolytschichten verwendet und liefert Partikel mit einem hydrodynamischen Durchmesser von 58 nm, die bei Abwesenheit von niedermolekularem Salz aggregatfrei sind. Das System wird gegen Salz stabilisiert, indem die letzte Poly-L-Lysin-Schicht mit Polyethylenglycol modifiziert wird. Die so entstandenen Multischalenpartikel zeigen weder im PBS-Puffer noch in humanem Serum Aggregation. Mittels winkelabhängiger dynamischer Lichtstreuung wird die Aggregatbildung kontrolliert, während ζ-Potential-Messungen die Kontrolle der Oberflächenladung erlauben.rnDa siRNA auf Grund ihres negativ geladenen Phosphat-Rückgrats ebenfalls ein Polyelektrolyt ist, wird sie aggregatfrei auf die positiv geladenen PLL-Nanopartikel aufgetragen. Die eingesetzte siRNA ist farbstoffmarkiert, um eine Detektion in vitro zu ermöglichen. Jedoch sind die entstandenen Komplexe mittels Fluoreszenzkorrelations-spektroskopie (FCS) nicht nachweisbar. Auch die Fluoreszenzmarkierung der PEGylierten Außenschale mittels kupferfreier Click-Chemie ist in der FCS nicht sichtbar, sodass eine Fluoreszenzauslöschung der Farbstoffe in den Multischalenpartikeln vermutet wird.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.